Answer :
Sure! Let's find the reciprocal or multiplicative inverse of [tex]\(-\frac{14}{15}\)[/tex].
### Step-by-Step Solution:
1. Understand the Reciprocal:
The reciprocal (or multiplicative inverse) of a fraction [tex]\(\frac{a}{b}\)[/tex] is [tex]\(\frac{b}{a}\)[/tex].
2. Apply to the Given Fraction:
We are given the fraction [tex]\(-\frac{14}{15}\)[/tex]. To find its reciprocal, we swap the numerator and the denominator.
3. Swap the Numerator and Denominator:
Swapping the numerator and the denominator of [tex]\(-\frac{14}{15}\)[/tex] gives us [tex]\(-\frac{15}{14}\)[/tex].
Therefore, the reciprocal or multiplicative inverse of [tex]\(-\frac{14}{15}\)[/tex] is [tex]\(-\frac{15}{14}\)[/tex].
So, the answer is:
[tex]\[
-\frac{15}{14}
\][/tex]
### Step-by-Step Solution:
1. Understand the Reciprocal:
The reciprocal (or multiplicative inverse) of a fraction [tex]\(\frac{a}{b}\)[/tex] is [tex]\(\frac{b}{a}\)[/tex].
2. Apply to the Given Fraction:
We are given the fraction [tex]\(-\frac{14}{15}\)[/tex]. To find its reciprocal, we swap the numerator and the denominator.
3. Swap the Numerator and Denominator:
Swapping the numerator and the denominator of [tex]\(-\frac{14}{15}\)[/tex] gives us [tex]\(-\frac{15}{14}\)[/tex].
Therefore, the reciprocal or multiplicative inverse of [tex]\(-\frac{14}{15}\)[/tex] is [tex]\(-\frac{15}{14}\)[/tex].
So, the answer is:
[tex]\[
-\frac{15}{14}
\][/tex]