College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Find the real solution(s) for the equation:

[tex]\[ 36x^4 + 9 = 45x^2 \][/tex]

Answer :

Sure! Let's solve the equation [tex]\(36x^4 + 9 = 45x^2\)[/tex] step by step to find the real solutions.

1. Rewrite the Equation:
Start by moving all terms to one side of the equation to set it to zero:
[tex]\[
36x^4 - 45x^2 + 9 = 0
\][/tex]

2. Substitution:
Notice that this is a quadratic in form if we let [tex]\(y = x^2\)[/tex]. Rewrite the equation using this substitution:
[tex]\[
36y^2 - 45y + 9 = 0
\][/tex]

3. Solve the Quadratic Equation:
Now, solve the quadratic equation [tex]\(36y^2 - 45y + 9 = 0\)[/tex]. You can use the quadratic formula:
[tex]\[
y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\][/tex]
Here, [tex]\(a = 36\)[/tex], [tex]\(b = -45\)[/tex], and [tex]\(c = 9\)[/tex]. Substitute these values into the formula:
[tex]\[
y = \frac{-(-45) \pm \sqrt{(-45)^2 - 4 \times 36 \times 9}}{2 \times 36}
\][/tex]
[tex]\[
y = \frac{45 \pm \sqrt{2025 - 1296}}{72}
\][/tex]
[tex]\[
y = \frac{45 \pm \sqrt{729}}{72}
\][/tex]
[tex]\[
y = \frac{45 \pm 27}{72}
\][/tex]

So the values for [tex]\(y\)[/tex] are:
[tex]\[
y = \frac{45 + 27}{72} = 1 \quad \text{and} \quad y = \frac{45 - 27}{72} = \frac{1}{2}
\][/tex]

4. Revert Substitution:
Now revert the substitution [tex]\(y = x^2\)[/tex] back to find [tex]\(x\)[/tex].

- For [tex]\(y = 1\)[/tex]:
[tex]\[
x^2 = 1 \quad \Rightarrow \quad x = \pm 1
\][/tex]

- For [tex]\(y = \frac{1}{2}\)[/tex]:
[tex]\[
x^2 = \frac{1}{2} \quad \Rightarrow \quad x = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2} = \pm \frac{1}{2}
\][/tex]

5. List the Real Solutions:
The real solutions for the original equation are:
[tex]\[
x = -1, \; x = -\frac{1}{2}, \; x = \frac{1}{2}, \; x = 1
\][/tex]

These are the real solutions: [tex]\(-1, -\frac{1}{2}, \frac{1}{2}, \text{and } 1\)[/tex].