Answer :
To find the product of [tex]\((G+13)(G-13)\)[/tex], you can use the difference of squares formula, which is an important algebraic identity. The difference of squares states that for any two terms [tex]\(a\)[/tex] and [tex]\(b\)[/tex], [tex]\((a + b)(a - b) = a^2 - b^2\)[/tex].
In this expression, we have:
- [tex]\(a = G\)[/tex]
- [tex]\(b = 13\)[/tex]
According to the difference of squares formula, the product becomes:
[tex]\[
(G + 13)(G - 13) = G^2 - 13^2
\][/tex]
Next, calculate [tex]\(13^2\)[/tex]:
[tex]\[
13^2 = 169
\][/tex]
Substitute back into the expression:
[tex]\[
G^2 - 169
\][/tex]
Therefore, the simplified product of [tex]\((G+13)(G-13)\)[/tex] is [tex]\(G^2 - 169\)[/tex].
In this expression, we have:
- [tex]\(a = G\)[/tex]
- [tex]\(b = 13\)[/tex]
According to the difference of squares formula, the product becomes:
[tex]\[
(G + 13)(G - 13) = G^2 - 13^2
\][/tex]
Next, calculate [tex]\(13^2\)[/tex]:
[tex]\[
13^2 = 169
\][/tex]
Substitute back into the expression:
[tex]\[
G^2 - 169
\][/tex]
Therefore, the simplified product of [tex]\((G+13)(G-13)\)[/tex] is [tex]\(G^2 - 169\)[/tex].