Answer :
Final answer:
The product of [tex](4x^3 - 2x^2)(6x - 9)[/tex] is [tex]24x^4 - 12x^3 + 18x^2.[/tex]
Explanation:
To find the product of [tex](4x^3 - 2x^2)(6x - 9)[/tex], we can use the distributive property.
Multiplying the first terms, we get [tex]4x^3 * 6x = 24x^4[/tex]
Multiplying the outer terms, we get [tex]4x^3 * -9 = -36x^3[/tex]
Multiplying the inner terms, we get [tex]-2x^2 * 6x = -12x^3.[/tex]
Multiplying the last terms, we get [tex]-2x^2 * -9 = 18x^2.[/tex]
Combining the like terms, we have [tex]24x^4 - 12x^3 + 18x^2.[/tex]
Therefore, the product of [tex](4x^3 - 2x^2)(6x - 9)[/tex] is [tex]24x^4 - 12x^3 + 18x^2.[/tex]