College

Find the product of [tex]2x^4(4x^2 + 3x + 1)[/tex].

A. [tex]8x^6 + 6x^5 + 2x^4[/tex]
B. [tex]8x^8 + 3x^4 + 2x^4[/tex]
C. [tex]2x^4 + 6x^5 + 8x^6[/tex]
D. [tex]6x^6 + 5x^5 + 3x^4[/tex]

Answer :

To find the product of [tex]\(2x^4(4x^2 + 3x + 1)\)[/tex], we need to distribute [tex]\(2x^4\)[/tex] across the terms inside the parentheses. Here's how it's done step-by-step:

1. Distribute [tex]\(2x^4\)[/tex] to each term inside the parentheses:

- First, multiply [tex]\(2x^4\)[/tex] by [tex]\(4x^2\)[/tex]:
[tex]\[
2x^4 \cdot 4x^2 = 8x^{4+2} = 8x^6
\][/tex]

- Next, multiply [tex]\(2x^4\)[/tex] by [tex]\(3x\)[/tex]:
[tex]\[
2x^4 \cdot 3x = 6x^{4+1} = 6x^5
\][/tex]

- Finally, multiply [tex]\(2x^4\)[/tex] by [tex]\(1\)[/tex]:
[tex]\[
2x^4 \cdot 1 = 2x^4
\][/tex]

2. Combine all the results:

By adding the results of these multiplications, we get:
[tex]\[
8x^6 + 6x^5 + 2x^4
\][/tex]

So, the product of [tex]\(2x^4(4x^2 + 3x + 1)\)[/tex] is [tex]\(8x^6 + 6x^5 + 2x^4\)[/tex].