High School

Find the product of [tex]2x^4(2x^2+3x+4)[/tex].

A. [tex]2x^6+3x^4+4x^4[/tex]
B. [tex]4x^6+6x^5+8x^4[/tex]
C. [tex]4x^4+3x^5+2x^6[/tex]
D. [tex]3x^6+4x^5+5x^4[/tex]

Answer :

To find the product of [tex]\(2x^4\)[/tex] and [tex]\((2x^2 + 3x + 4)\)[/tex], we'll follow these steps:

1. Apply the Distributive Property:

Multiply [tex]\(2x^4\)[/tex] with each term inside the parentheses:

[tex]\[
2x^4 \cdot (2x^2 + 3x + 4) = (2x^4 \cdot 2x^2) + (2x^4 \cdot 3x) + (2x^4 \cdot 4)
\][/tex]

2. Multiply Each Term:

- First Term: [tex]\(2x^4 \cdot 2x^2\)[/tex]

- Multiply the coefficients: [tex]\(2 \times 2 = 4\)[/tex].
- Add the exponents of [tex]\(x\)[/tex]: [tex]\(4 + 2 = 6\)[/tex].
- Result: [tex]\(4x^6\)[/tex].

- Second Term: [tex]\(2x^4 \cdot 3x\)[/tex]

- Multiply the coefficients: [tex]\(2 \times 3 = 6\)[/tex].
- Add the exponents of [tex]\(x\)[/tex]: [tex]\(4 + 1 = 5\)[/tex].
- Result: [tex]\(6x^5\)[/tex].

- Third Term: [tex]\(2x^4 \cdot 4\)[/tex]

- Multiply the coefficients: [tex]\(2 \times 4 = 8\)[/tex].
- The power of [tex]\(x\)[/tex] remains 4, as it is multiplied by a constant.
- Result: [tex]\(8x^4\)[/tex].

3. Combine All Terms:

Combine the results from each multiplication:

[tex]\[
4x^6 + 6x^5 + 8x^4
\][/tex]

This final polynomial [tex]\(4x^6 + 6x^5 + 8x^4\)[/tex] represents the expanded form of the given expression. Therefore, the correct answer from the options is:

- [tex]\(4x^6 + 6x^5 + 8x^4\)[/tex]