College

Find the first term in the sequence for which [tex]$a_{31} = 197$[/tex] and [tex]d = 10[/tex].

Type your answer:

Answer :

To find the first term [tex]\( a_1 \)[/tex] of an arithmetic sequence where [tex]\( a_{31} = 197 \)[/tex] and the common difference [tex]\( d = 10 \)[/tex], we can use the formula for the [tex]\( n \)[/tex]-th term of an arithmetic sequence:

[tex]\[ a_n = a_1 + (n - 1) \cdot d \][/tex]

In this case, we are given:
- [tex]\( a_{31} = 197 \)[/tex]
- [tex]\( n = 31 \)[/tex]
- [tex]\( d = 10 \)[/tex]

We need to find [tex]\( a_1 \)[/tex].

Substitute the given values into the formula:

[tex]\[ a_{31} = a_1 + (31 - 1) \cdot 10 \][/tex]

[tex]\[ 197 = a_1 + 30 \cdot 10 \][/tex]

[tex]\[ 197 = a_1 + 300 \][/tex]

To solve for [tex]\( a_1 \)[/tex], subtract 300 from both sides of the equation:

[tex]\[ 197 - 300 = a_1 \][/tex]

[tex]\[ -103 = a_1 \][/tex]

So, the first term [tex]\( a_1 \)[/tex] of the sequence is [tex]\( -103 \)[/tex].