College

Find the derivative of [tex]y = 4x^4 + 3x^3 + 1[/tex].

A. [tex]16x^3 + 9x^2 - 7[/tex]

B. [tex]4x^3 + 3x^2[/tex]

C. [tex]16x^3 + 9x^2[/tex]

D. [tex]4x^3 + 3x^2 - 7[/tex]

Answer :

Certainly! Let's find the derivative of the function [tex]\( y = 4x^4 + 3x^3 + 1 \)[/tex].

### Step-by-Step Solution

1. Understand the Function:
The function given is [tex]\( y = 4x^4 + 3x^3 + 1 \)[/tex].

2. Apply Derivative Rules:
- When differentiating a polynomial, you use the power rule: [tex]\( \frac{d}{dx}[x^n] = nx^{n-1} \)[/tex].
- Differentiate term by term.

3. Differentiate Each Term:
- The first term [tex]\( 4x^4 \)[/tex]:
[tex]\[
\frac{d}{dx}[4x^4] = 4 \times 4x^{4-1} = 16x^3
\][/tex]

- The second term [tex]\( 3x^3 \)[/tex]:
[tex]\[
\frac{d}{dx}[3x^3] = 3 \times 3x^{3-1} = 9x^2
\][/tex]

- The third term, a constant [tex]\( 1 \)[/tex]:
- The derivative of a constant is always 0.
[tex]\[
\frac{d}{dx}[1] = 0
\][/tex]

4. Combine the Derivatives:
- Combine the results from each term:
[tex]\[
\frac{dy}{dx} = 16x^3 + 9x^2 + 0
\][/tex]

5. Simplified Derivative:
- The derivative is:
[tex]\[
16x^3 + 9x^2
\][/tex]

Therefore, the correct derivative of the function [tex]\( y = 4x^4 + 3x^3 + 1 \)[/tex] is [tex]\( 16x^3 + 9x^2 \)[/tex].

Among the answer choices provided, [tex]\( 16x^3 + 9x^2 \)[/tex] matches the derivative calculation.