College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Find the 4th term of [tex]\((x-y)^{12}\)[/tex].

A. [tex]495 x^8 y^4[/tex]
B. [tex]220 x^9 y^3[/tex]
C. [tex]-36 x^9 y^3[/tex]
D. [tex]-220 x^9 y^3[/tex]

Answer :

To find the 4th term of the expansion of [tex]\((x-y)^{12}\)[/tex], we use the Binomial Theorem. The general term for the binomial expansion of [tex]\((x-y)^n\)[/tex] is given by:

[tex]\[
T_{k+1} = \binom{n}{k} x^{n-k} (-y)^k
\][/tex]

where:
- [tex]\( n = 12 \)[/tex] (the exponent in the binomial),
- [tex]\( k \)[/tex] is the term number minus 1 (so for the 4th term, [tex]\( k = 3 \)[/tex]),
- [tex]\(\binom{n}{k}\)[/tex] is the binomial coefficient.

Let's go through the steps:

1. Identify [tex]\( n \)[/tex] and [tex]\( k \)[/tex]:
- [tex]\( n = 12 \)[/tex]
- For the 4th term, [tex]\( k = 3 \)[/tex].

2. Calculate the binomial coefficient [tex]\( \binom{12}{3} \)[/tex]:
[tex]\[
\binom{12}{3} = \frac{12 \times 11 \times 10}{3 \times 2 \times 1} = 220
\][/tex]

3. Determine the powers of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
- The power of [tex]\( x \)[/tex] is [tex]\( n-k = 12-3 = 9 \)[/tex].
- The power of [tex]\( y \)[/tex] is [tex]\( k = 3 \)[/tex].

4. Apply the sign for [tex]\((-y)^k\)[/tex]:
- Since [tex]\((-y)^3\)[/tex] results in a negative sign [tex]\((-1)^3 = -1\)[/tex], the term will be negative.

5. Combine everything to form the term:
[tex]\[
T_4 = 220 \cdot x^9 \cdot (-y)^3 = -220x^9y^3
\][/tex]

Therefore, the 4th term of the expansion of [tex]\((x-y)^{12}\)[/tex] is [tex]\(-220 x^9 y^3\)[/tex]. So, the correct answer is:

[tex]\[
-220 x^9 y^3
\][/tex]