Answer :
To find [tex]$f(5)$[/tex] for the function
[tex]$$
f(x)=\frac{1}{9}\cdot 3^x,
$$[/tex]
we substitute [tex]$x=5$[/tex] into the function:
[tex]$$
f(5) = \frac{1}{9}\cdot 3^5.
$$[/tex]
Next, we calculate [tex]$3^5$[/tex]. Since
[tex]$$
3^5 = 3 \times 3 \times 3 \times 3 \times 3 = 243,
$$[/tex]
the expression becomes:
[tex]$$
f(5) = \frac{1}{9}\cdot 243.
$$[/tex]
Finally, we compute the multiplication:
[tex]$$
\frac{1}{9} \cdot 243 = \frac{243}{9} = 27.
$$[/tex]
Thus, the value of [tex]$f(5)$[/tex] is [tex]$\boxed{27}$[/tex].
[tex]$$
f(x)=\frac{1}{9}\cdot 3^x,
$$[/tex]
we substitute [tex]$x=5$[/tex] into the function:
[tex]$$
f(5) = \frac{1}{9}\cdot 3^5.
$$[/tex]
Next, we calculate [tex]$3^5$[/tex]. Since
[tex]$$
3^5 = 3 \times 3 \times 3 \times 3 \times 3 = 243,
$$[/tex]
the expression becomes:
[tex]$$
f(5) = \frac{1}{9}\cdot 243.
$$[/tex]
Finally, we compute the multiplication:
[tex]$$
\frac{1}{9} \cdot 243 = \frac{243}{9} = 27.
$$[/tex]
Thus, the value of [tex]$f(5)$[/tex] is [tex]$\boxed{27}$[/tex].