Answer :
To find [tex]\( f(5) \)[/tex] for the function [tex]\( f(x) = \frac{1}{9}(3)^x \)[/tex], we need to substitute [tex]\( x = 5 \)[/tex] into the function.
1. Start with the function:
[tex]\[ f(x) = \frac{1}{9} \times 3^x \][/tex]
2. Substitute [tex]\( x = 5 \)[/tex]:
[tex]\[ f(5) = \frac{1}{9} \times 3^5 \][/tex]
3. Calculate [tex]\( 3^5 \)[/tex]. We find that:
[tex]\[ 3^5 = 3 \times 3 \times 3 \times 3 \times 3 = 243 \][/tex]
4. Now, substitute back into the function:
[tex]\[ f(5) = \frac{1}{9} \times 243 \][/tex]
5. Perform the multiplication:
[tex]\[ \frac{1}{9} \times 243 = \frac{243}{9} = 27 \][/tex]
Thus, [tex]\( f(5) = 27 \)[/tex].
The correct answer is:
A. 27
1. Start with the function:
[tex]\[ f(x) = \frac{1}{9} \times 3^x \][/tex]
2. Substitute [tex]\( x = 5 \)[/tex]:
[tex]\[ f(5) = \frac{1}{9} \times 3^5 \][/tex]
3. Calculate [tex]\( 3^5 \)[/tex]. We find that:
[tex]\[ 3^5 = 3 \times 3 \times 3 \times 3 \times 3 = 243 \][/tex]
4. Now, substitute back into the function:
[tex]\[ f(5) = \frac{1}{9} \times 243 \][/tex]
5. Perform the multiplication:
[tex]\[ \frac{1}{9} \times 243 = \frac{243}{9} = 27 \][/tex]
Thus, [tex]\( f(5) = 27 \)[/tex].
The correct answer is:
A. 27