Answer :
To find [tex]\( f(5) \)[/tex] for the function [tex]\( f(x) = \frac{1}{9}(3)^x \)[/tex], follow these steps:
1. Start by replacing [tex]\( x \)[/tex] with 5 in the function:
[tex]\[
f(5) = \frac{1}{9} \times 3^5
\][/tex]
2. Calculate [tex]\( 3^5 \)[/tex]:
[tex]\[
3^5 = 3 \times 3 \times 3 \times 3 \times 3 = 243
\][/tex]
3. Substitute [tex]\( 243 \)[/tex] back into the equation:
[tex]\[
f(5) = \frac{1}{9} \times 243
\][/tex]
4. Divide 243 by 9:
[tex]\[
\frac{243}{9} = 27
\][/tex]
Thus, the value of [tex]\( f(5) \)[/tex] is 27.
So, the correct answer is: B. 27
1. Start by replacing [tex]\( x \)[/tex] with 5 in the function:
[tex]\[
f(5) = \frac{1}{9} \times 3^5
\][/tex]
2. Calculate [tex]\( 3^5 \)[/tex]:
[tex]\[
3^5 = 3 \times 3 \times 3 \times 3 \times 3 = 243
\][/tex]
3. Substitute [tex]\( 243 \)[/tex] back into the equation:
[tex]\[
f(5) = \frac{1}{9} \times 243
\][/tex]
4. Divide 243 by 9:
[tex]\[
\frac{243}{9} = 27
\][/tex]
Thus, the value of [tex]\( f(5) \)[/tex] is 27.
So, the correct answer is: B. 27