Answer :
Let's solve the given problem step-by-step:
We are asked to find [tex]\( f(1) \)[/tex], where the function [tex]\( f(x) \)[/tex] is defined as:
[tex]\[ f(x) = 3x - 4 \][/tex]
To find [tex]\( f(1) \)[/tex], we need to substitute [tex]\( x = 1 \)[/tex] into the function [tex]\( f(x) \)[/tex].
1. Substitute [tex]\( x = 1 \)[/tex] into the function:
[tex]\[
f(1) = 3(1) - 4
\][/tex]
2. Calculate the expression:
[tex]\[
3(1) = 3
\][/tex]
[tex]\[
3 - 4 = -1
\][/tex]
So, the value of [tex]\( f(1) \)[/tex] is [tex]\(-1\)[/tex].
Therefore, the correct answer is [tex]\(-1\)[/tex].
We are asked to find [tex]\( f(1) \)[/tex], where the function [tex]\( f(x) \)[/tex] is defined as:
[tex]\[ f(x) = 3x - 4 \][/tex]
To find [tex]\( f(1) \)[/tex], we need to substitute [tex]\( x = 1 \)[/tex] into the function [tex]\( f(x) \)[/tex].
1. Substitute [tex]\( x = 1 \)[/tex] into the function:
[tex]\[
f(1) = 3(1) - 4
\][/tex]
2. Calculate the expression:
[tex]\[
3(1) = 3
\][/tex]
[tex]\[
3 - 4 = -1
\][/tex]
So, the value of [tex]\( f(1) \)[/tex] is [tex]\(-1\)[/tex].
Therefore, the correct answer is [tex]\(-1\)[/tex].