College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Find [tex]DF[/tex] if [tex]D[/tex] is between [tex]E[/tex] and [tex]F[/tex], [tex]ED = 6x - 4[/tex], [tex]DF = 3x + 5[/tex], and [tex]EF = 46[/tex].

A. 20
B. 22
C. 26
D. 28

Answer :

To solve for [tex]\( D F \)[/tex] given that [tex]\( D \)[/tex] is between [tex]\( E \)[/tex] and [tex]\( F \)[/tex], and given the lengths [tex]\( E D = 6x - 4 \)[/tex], [tex]\( D F = 3x + 5 \)[/tex], and [tex]\( E F = 46 \)[/tex], we follow these steps:

1. Set up the equation:
Since [tex]\( D \)[/tex] is between [tex]\( E \)[/tex] and [tex]\( F \)[/tex], we can write the following equation:
[tex]\[
E D + D F = E F
\][/tex]
Substituting the given expressions, we get:
[tex]\[
(6x - 4) + (3x + 5) = 46
\][/tex]

2. Combine like terms:
Combine the terms involving [tex]\( x \)[/tex] and the constants:
[tex]\[
6x - 4 + 3x + 5 = 46
\][/tex]
Simplify this:
[tex]\[
9x + 1 = 46
\][/tex]

3. Solve for [tex]\( x \)[/tex]:
Subtract 1 from both sides to isolate the term with [tex]\( x \)[/tex]:
[tex]\[
9x = 45
\][/tex]
Divide both sides by 9:
[tex]\[
x = 5
\][/tex]

4. Find [tex]\( D F \)[/tex]:
Now that we have [tex]\( x \)[/tex], we can substitute it back into the equation for [tex]\( D F \)[/tex]:
[tex]\[
D F = 3x + 5
\][/tex]
Substituting [tex]\( x = 5 \)[/tex]:
[tex]\[
D F = 3(5) + 5 = 15 + 5 = 20
\][/tex]

Therefore, the length of [tex]\( D F \)[/tex] is [tex]\( \boxed{20} \)[/tex].