College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Find [tex]\(\Delta H^{\circ}\)[/tex] for the reaction:

[tex]\[2 S(s) + 3 O_2(g) \rightarrow 2 SO_3(g)\][/tex]

Given:

[tex]\[
\begin{array}{cl}
S(s) + O_2(g) \rightarrow SO_2(g) & \Delta H^{\circ} = -296.1 \, \text{kJ} \\
2 SO_3(g) \rightarrow 2 SO_2(g) + O_2(g) & \Delta H^{\circ} = 198.2 \, \text{kJ}
\end{array}
\][/tex]

Options:

A) [tex]\(-394.0 \, \text{kJ}\)[/tex]
B) [tex]\(-790.4 \, \text{kJ}\)[/tex]
C) [tex]\(+97.9 \, \text{kJ}\)[/tex]
D) [tex]\(97.9 \, \text{kJ}\)[/tex]

Answer :

To find the standard enthalpy change ([tex]\(\Delta H^{\circ}\)[/tex]) for the reaction [tex]\(2 \text{S}(s) + 3 \text{O}_2(g) \rightarrow 2 \text{SO}_3(g)\)[/tex], you can use Hess's Law. This law states that the total enthalpy change of a reaction is the sum of the enthalpy changes of its individual steps.

Given Reactions:

1. [tex]\( \text{S}(s) + \text{O}_2(g) \rightarrow \text{SO}_2(g) \)[/tex] with [tex]\(\Delta H^{\circ} = -296.1 \, \text{kJ}\)[/tex]
2. [tex]\( 2 \text{SO}_3(g) \rightarrow 2 \text{SO}_2(g) + \text{O}_2(g) \)[/tex] with [tex]\(\Delta H^{\circ} = 198.2 \, \text{kJ}\)[/tex]

Steps to Solve:

1. Modify the First Reaction:
- The first reaction needs to be multiplied by 2 to match the number of sulfur atoms in our target reaction:
[tex]\[
2(\text{S}(s) + \text{O}_2(g) \rightarrow \text{SO}_2(g))
\][/tex]
- This gives:
[tex]\[
2\text{S}(s) + 2\text{O}_2(g) \rightarrow 2\text{SO}_2(g)
\][/tex]
- Modified [tex]\(\Delta H^{\circ} = 2 \times (-296.1 \, \text{kJ}) = -592.2 \, \text{kJ}\)[/tex]

2. Reverse the Second Reaction:
- Reverse the second reaction to form [tex]\( \text{SO}_3 \)[/tex] from [tex]\( \text{SO}_2 \)[/tex]:
[tex]\[
2\text{SO}_2(g) + \text{O}_2(g) \rightarrow 2\text{SO}_3(g)
\][/tex]
- Reverse the sign of [tex]\(\Delta H^{\circ}\)[/tex]:
[tex]\[
\Delta H^{\circ} = -198.2 \, \text{kJ}
\][/tex]

3. Add the Reactions:
- Combine the modified first reaction and the reversed second reaction:
[tex]\[
(2\text{S}(s) + 2\text{O}_2(g) \rightarrow 2\text{SO}_2(g)) + (2\text{SO}_2(g) + \text{O}_2(g) \rightarrow 2\text{SO}_3(g))
\][/tex]
- The [tex]\(\text{SO}_2\)[/tex] cancels out, leaving:
[tex]\[
2\text{S}(s) + 3\text{O}_2(g) \rightarrow 2\text{SO}_3(g)
\][/tex]

4. Calculate Total [tex]\(\Delta H\)[/tex]:
[tex]\[
\Delta H^{\circ}_{\text{total}} = -592.2 \, \text{kJ} + (-198.2 \, \text{kJ}) = -790.4 \, \text{kJ}
\][/tex]

Therefore, the standard enthalpy change for the reaction is [tex]\(-790.4 \, \text{kJ}\)[/tex].

The correct answer is B) -790.4 kJ.