College

Find [tex]$3 \frac{3}{4} - 1 \frac{2}{3}$[/tex].

1. Convert the mixed numbers to improper fractions:
- [tex]$3 \frac{3}{4} = \frac{15}{4}$[/tex]
- [tex]$1 \frac{2}{3} = \frac{5}{3}$[/tex]

2. Find a common denominator and rewrite the fractions:
- Common denominator for 4 and 3 is 12.
- [tex]$\frac{15}{4} = \frac{45}{12}$[/tex]
- [tex]$\frac{5}{3} = \frac{20}{12}$[/tex]

3. Subtract the fractions:
- [tex]$\frac{45}{12} - \frac{20}{12} = \frac{25}{12}$[/tex]

4. Convert the result back to a mixed number:
- [tex]$\frac{25}{12} = 2 \frac{1}{12}$[/tex]

Therefore, [tex]$3 \frac{3}{4} - 1 \frac{2}{3} = 2 \frac{1}{12}$[/tex].

Answer :

To solve [tex]\( 3 \frac{3}{4} - 1 \frac{2}{3} \)[/tex], follow these steps:

1. Convert Mixed Numbers to Improper Fractions:

- For [tex]\( 3 \frac{3}{4} \)[/tex]:
- Multiply the whole number (3) by the denominator (4) and add the numerator (3).
- This gives [tex]\((3 \times 4) + 3 = 15\)[/tex].
- So, [tex]\(3 \frac{3}{4}\)[/tex] converts to the improper fraction [tex]\(\frac{15}{4}\)[/tex].

- For [tex]\( 1 \frac{2}{3} \)[/tex]:
- Multiply the whole number (1) by the denominator (3) and add the numerator (2).
- This gives [tex]\((1 \times 3) + 2 = 5\)[/tex].
- So, [tex]\(1 \frac{2}{3}\)[/tex] converts to the improper fraction [tex]\(\frac{5}{3}\)[/tex].

2. Find a Common Denominator:

- The denominators are 4 and 3. The least common multiple of 4 and 3 is 12.

3. Convert to Equivalent Fractions with Common Denominator:

- Convert [tex]\(\frac{15}{4}\)[/tex] to a fraction with a denominator of 12:
- Multiply both the numerator and denominator by 3:
- [tex]\(\frac{15 \times 3}{4 \times 3} = \frac{45}{12}\)[/tex].

- Convert [tex]\(\frac{5}{3}\)[/tex] to a fraction with a denominator of 12:
- Multiply both the numerator and denominator by 4:
- [tex]\(\frac{5 \times 4}{3 \times 4} = \frac{20}{12}\)[/tex].

4. Subtract the Fractions:

- Before deletion: We subtract the numerators while keeping the common denominator:
- [tex]\( \frac{45}{12} - \frac{20}{12} = \frac{25}{12} \)[/tex].

5. Convert the Result to a Mixed Number:

- Divide the numerator (25) by the denominator (12) to find the whole number part:
- [tex]\(25 \div 12 = 2\)[/tex] remainder 1.
- The remainder is the numerator of the fractional part, with 12 as the denominator:
- [tex]\(2 \frac{1}{12}\)[/tex].

So, [tex]\(3 \frac{3}{4} - 1 \frac{2}{3} = 2 \frac{1}{12}\)[/tex].