College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Find \((f \cdot g)(x)\) if \[f(x) = 7x^3 - 5x^2 + 42x - 30\] and \[g(x) = 7x - 5\].

A. \((f \cdot g)(x) = 49x^4 - 269x^2 - 150\)

B. \((f \cdot g)(x) = 49x^4 + 269x^2 + 150\)

C. \((f \cdot g)(x) = 49x^4 - 70x^3 + 319x^2 - 420x + 150\)

D. \((f \cdot g)(x) = 49x^4 + 70x^3 - 319x^2 + 420x - 150\)

Answer :

To find [tex]\((f \cdot g)(x)\)[/tex] for the functions [tex]\(f(x) = 7x^3 - 5x^2 + 42x - 30\)[/tex] and [tex]\(g(x) = 7x - 5\)[/tex], we need to multiply these two functions. This involves distributing each term in [tex]\(f(x)\)[/tex] to each term in [tex]\(g(x)\)[/tex], and then combining like terms. Here is a step-by-step guide:

1. Identify the Terms:
- [tex]\(f(x)\)[/tex] has terms: [tex]\(7x^3, -5x^2, 42x, -30\)[/tex].
- [tex]\(g(x)\)[/tex] has terms: [tex]\(7x, -5\)[/tex].

2. Distribute each term of [tex]\(f(x)\)[/tex] to each term of [tex]\(g(x)\)[/tex]:
- Multiply [tex]\(7x^3\)[/tex] by each term in [tex]\(g(x)\)[/tex]:
- [tex]\(7x^3 \cdot 7x = 49x^4\)[/tex]
- [tex]\(7x^3 \cdot (-5) = -35x^3\)[/tex]

- Multiply [tex]\(-5x^2\)[/tex] by each term in [tex]\(g(x)\)[/tex]:
- [tex]\(-5x^2 \cdot 7x = -35x^3\)[/tex]
- [tex]\(-5x^2 \cdot (-5) = 25x^2\)[/tex]

- Multiply [tex]\(42x\)[/tex] by each term in [tex]\(g(x)\)[/tex]:
- [tex]\(42x \cdot 7x = 294x^2\)[/tex]
- [tex]\(42x \cdot (-5) = -210x\)[/tex]

- Multiply [tex]\(-30\)[/tex] by each term in [tex]\(g(x)\)[/tex]:
- [tex]\(-30 \cdot 7x = -210x\)[/tex]
- [tex]\(-30 \cdot (-5) = 150\)[/tex]

3. Combine all the terms:
Collect all the results from the distribution:
[tex]\[
49x^4 + (-35x^3 - 35x^3) + (25x^2 + 294x^2) + (-210x - 210x) + 150
\][/tex]

4. Simplify the expression:
- Combine like terms:
- [tex]\(x^3\)[/tex] terms: [tex]\(-35x^3 - 35x^3 = -70x^3\)[/tex]
- [tex]\(x^2\)[/tex] terms: [tex]\(25x^2 + 294x^2 = 319x^2\)[/tex]
- [tex]\(x\)[/tex] terms: [tex]\(-210x - 210x = -420x\)[/tex]

5. Final expression:
[tex]\[
(f \cdot g)(x) = 49x^4 - 70x^3 + 319x^2 - 420x + 150
\][/tex]

Thus, the polynomial representing [tex]\((f \cdot g)(x)\)[/tex] is:

[tex]\[
\boxed{49x^4 - 70x^3 + 319x^2 - 420x + 150}
\][/tex]