College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Factor the four-term polynomial by grouping.

[tex]12x^3 - 20x^2 + 15x - 25[/tex]

Select the correct choice below:

A. [tex]12x^3 - 20x^2 + 15x - 25 =[/tex] [tex]\square[/tex]

B. The polynomial is not factorable by grouping.

Answer :

We start with the polynomial
[tex]$$
12x^3 - 20x^2 + 15x - 25.
$$[/tex]

Step 1. Group Terms

Group the polynomial into two groups:
[tex]$$
(12x^3 - 20x^2) + (15x - 25).
$$[/tex]

Step 2. Factor Common Factors in Each Group

In the first group, factor out the greatest common factor (GCF) [tex]$4x^2$[/tex]:
[tex]$$
12x^3 - 20x^2 = 4x^2(3x - 5).
$$[/tex]

In the second group, factor out the GCF [tex]$5$[/tex]:
[tex]$$
15x - 25 = 5(3x - 5).
$$[/tex]

Step 3. Factor Out the Common Binomial

Notice that both groups now contain the common factor [tex]$(3x-5)$[/tex]. Factor this binomial out:
[tex]$$
4x^2(3x-5) + 5(3x-5) = (3x-5)\left(4x^2 + 5\right).
$$[/tex]

Final Answer

Thus, the factored form of the polynomial is:
[tex]$$
12x^3 - 20x^2 + 15x - 25 = (3x-5)(4x^2+5).
$$[/tex]

Select choice A with the filled box:
[tex]$$
\boxed{(3x-5)(4x^2+5)}
$$[/tex]