High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Factor the following polynomials by grouping.

1. [tex]8h^3 + 4h^2 + 10h + 5[/tex]

2. [tex]14x^5 + 35x^3 - 4x^2 - 10[/tex]

3. [tex]15a^2b - 25a^2 + 9b - 15[/tex]

Answer :

Sure! Let's factor the given polynomials by grouping.

### Problem 2:
Factor the polynomial [tex]\(8h^3 + 4h^2 + 10h + 5\)[/tex].

Steps:
1. Group terms: Based on the given hint, group as [tex]\((8h^3 + 4h^2) + (10h + 5)\)[/tex].

2. Factor each group independently:
- First group: [tex]\(8h^3 + 4h^2\)[/tex]
- Factor out the greatest common factor (GCF), which is [tex]\(4h^2\)[/tex]:
- [tex]\(4h^2(2h + 1)\)[/tex]

- Second group: [tex]\(10h + 5\)[/tex]
- Factor out the GCF, which is [tex]\(5\)[/tex]:
- [tex]\(5(2h + 1)\)[/tex]

3. Combine the factored terms:
Both groups have a common factor [tex]\((2h + 1)\)[/tex], so we combine them:
- [tex]\((2h + 1)(4h^2 + 5)\)[/tex]

### Problem 3:
Factor the polynomial [tex]\(14x^5 + 35x^3 - 4x^2 - 10\)[/tex].

Steps:
1. Group terms: [tex]\((14x^5 + 35x^3) + (-4x^2 - 10)\)[/tex].

2. Factor each group independently:
- First group: [tex]\(14x^5 + 35x^3\)[/tex]
- Factor out [tex]\(7x^3\)[/tex]:
- [tex]\(7x^3(2x^2 + 5)\)[/tex]

- Second group: [tex]\(-4x^2 - 10\)[/tex]
- Factor out [tex]\(-2\)[/tex]:
- [tex]\(-2(2x^2 + 5)\)[/tex]

3. Combine the factored terms:
Both groups have a common factor [tex]\((2x^2 + 5)\)[/tex], so we can combine:
- [tex]\((2x^2 + 5)(7x^3 - 2)\)[/tex]

### Problem 4:
Factor the polynomial [tex]\(15a^2b - 25a^2 + 9b - 15\)[/tex].

Steps:
1. Group terms: [tex]\((15a^2b - 25a^2) + (9b - 15)\)[/tex].

2. Factor each group independently:
- First group: [tex]\(15a^2b - 25a^2\)[/tex]
- Factor out [tex]\(5a^2\)[/tex]:
- [tex]\(5a^2(3b - 5)\)[/tex]

- Second group: [tex]\(9b - 15\)[/tex]
- Factor out [tex]\(3\)[/tex]:
- [tex]\(3(3b - 5)\)[/tex]

3. Combine the factored terms:
Both groups have a common factor [tex]\((3b - 5)\)[/tex], so we can combine:
- [tex]\((3b - 5)(5a^2 + 3)\)[/tex]

That's how each polynomial is factored by grouping!