College

Factor the following high-degree polynomial:

[tex]80 x^{13}-200 x^{11}+125 x^9[/tex]

A. [tex]5 x^9\left(4 x^2+5\right)^2[/tex]

B. [tex]5 x^9\left(4 x^2-5\right)^2[/tex]

C. [tex]5 x^9\left(4 x^2-5\right)\left(4 x^2+5\right)[/tex]

D. [tex]x^9\left(40 x^2-5\right)^2[/tex]

Answer :

To solve the problem of factoring the polynomial [tex]\(80x^{13} - 200x^{11} + 125x^9\)[/tex], follow these steps:

1. Identify the Greatest Common Factor (GCF):

Look for the greatest common factor of the coefficients and the lowest power of [tex]\(x\)[/tex] present in all terms.

- Coefficients: 80, 200, and 125
- Common factor of the coefficients: 5 (since 80, 200, and 125 are all divisible by 5)
- Powers of [tex]\(x\)[/tex]: [tex]\(x^{13}\)[/tex], [tex]\(x^{11}\)[/tex], [tex]\(x^9\)[/tex]
- The lowest power of [tex]\(x\)[/tex] present is [tex]\(x^9\)[/tex].

Therefore, the GCF is [tex]\(5x^9\)[/tex].

2. Factor out the GCF:

Divide each term of the polynomial by the GCF [tex]\(5x^9\)[/tex]:

[tex]\[
\begin{align*}
80x^{13} & \rightarrow \frac{80x^{13}}{5x^9} = 16x^4 \\
-200x^{11} & \rightarrow \frac{-200x^{11}}{5x^9} = -40x^2 \\
125x^{9} & \rightarrow \frac{125x^9}{5x^9} = 25
\end{align*}
\][/tex]

So, the polynomial becomes:

[tex]\[
5x^9(16x^4 - 40x^2 + 25)
\][/tex]

3. Factor the Quadratic Expression:

The expression inside the parentheses [tex]\(16x^4 - 40x^2 + 25\)[/tex] is a quadratic expression in terms of [tex]\(x^2\)[/tex]. Let [tex]\(y = x^2\)[/tex]. Then the expression becomes:

[tex]\[
16y^2 - 40y + 25
\][/tex]

This is a quadratic in [tex]\(y\)[/tex]. Factor the quadratic expression:

[tex]\[
\begin{align*}
16y^2 - 40y + 25 &= (4y - 5)^2
\end{align*}
\][/tex]

Substitute back [tex]\(y = x^2\)[/tex]:

[tex]\[
(4x^2 - 5)^2
\][/tex]

4. Combine the Factors:

The complete factorization of the original polynomial is:

[tex]\[
5x^9(4x^2 - 5)^2
\][/tex]

Let's look at the options you were given:

- (A) [tex]\(5x^9(4x^2 + 5)^2\)[/tex]
- (B) [tex]\(5x^9(4x^2 - 5)^2\)[/tex]
- (C) [tex]\(5x^9(4x^2 - 5)(4x^2 + 5)\)[/tex]
- (D) [tex]\(x^9(40x^2 - 5)^2\)[/tex]

Comparing our factored form, [tex]\(5x^9(4x^2 - 5)^2\)[/tex], to the options, you can see the correct answer is option (B).