College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Factor the expression:

[tex]
3x^7 + 12x^5 + 9x^2
[/tex]

[tex]
x(x + x^3 + 3)
[/tex]

Answer :

We wish to express
[tex]$$
3x^7+12x^5+9x^2
$$[/tex]
in the form
[tex]$$
Q(x)\cdot x\Bigl(x+x^3+3\Bigr),
$$[/tex]
which can be rewritten as
[tex]$$
3x^7+12x^5+9x^2 = Q(x) \cdot \Bigl(x^4+x^2+3x\Bigr).
$$[/tex]

Our goal is to find the polynomial [tex]$Q(x)$[/tex] (and, if necessary, a remainder) such that
[tex]$$
3x^7+12x^5+9x^2 = Q(x) \cdot \Bigl(x^4+x^2+3x\Bigr) + R(x),
$$[/tex]
with the degree of [tex]$R(x)$[/tex] less than the degree of the divisor [tex]$x^4+x^2+3x$[/tex].

We perform polynomial division step by step:

1. Notice that the divisor is
[tex]$$
x(x+x^3+3)= x^4+x^2+3x.
$$[/tex]

2. Divide the leading term of the dividend, [tex]$3x^7$[/tex], by the leading term of the divisor, [tex]$x^4$[/tex], to obtain the first term of the quotient:
[tex]$$
\frac{3x^7}{x^4} = 3x^3.
$$[/tex]
Multiply the entire divisor by [tex]$3x^3$[/tex]:
[tex]$$
3x^3\cdot(x^4+x^2+3x)= 3x^7+3x^5+9x^4.
$$[/tex]
Subtract this from the original dividend:
[tex]$$
(3x^7+12x^5+9x^2) - (3x^7+3x^5+9x^4)= 9x^5-9x^4+9x^2.
$$[/tex]

3. Now, divide the new leading term [tex]$9x^5$[/tex] by [tex]$x^4$[/tex] to obtain the next term of the quotient:
[tex]$$
\frac{9x^5}{x^4} = 9x.
$$[/tex]
Multiply the divisor by [tex]$9x$[/tex]:
[tex]$$
9x\cdot(x^4+x^2+3x)= 9x^5+9x^3+27x^2.
$$[/tex]
Subtract this from the current polynomial:
[tex]$$
(9x^5-9x^4+9x^2) - (9x^5+9x^3+27x^2)= -9x^4-9x^3-18x^2.
$$[/tex]

4. Finally, divide the leading term [tex]$-9x^4$[/tex] by [tex]$x^4$[/tex] to obtain the next term:
[tex]$$
\frac{-9x^4}{x^4} = -9.
$$[/tex]
Multiply the divisor by [tex]$-9$[/tex]:
[tex]$$
-9\cdot (x^4+x^2+3x)= -9x^4-9x^2-27x.
$$[/tex]
Subtract this product from the current polynomial:
[tex]$$
(-9x^4-9x^3-18x^2) - (-9x^4-9x^2-27x)= -9x^3-9x^2+27x.
$$[/tex]

After these steps, the quotient obtained is
[tex]$$
Q(x)=3x^3+9x-9,
$$[/tex]
and the remainder is
[tex]$$
R(x)=-9x^3-9x^2+27x.
$$[/tex]

Thus, the complete division gives:
[tex]$$
3x^7+12x^5+9x^2 = \Bigl(3x^3+9x-9\Bigr)\Bigl(x^4+x^2+3x\Bigr) + \Bigl(-9x^3-9x^2+27x\Bigr).
$$[/tex]

Since our goal was to write [tex]$3x^7+12x^5+9x^2$[/tex] in the form
[tex]$$
\text{[?]}\cdot x\Bigl(x+x^3+3\Bigr),
$$[/tex]
the missing factor in the bracket is
[tex]$$
3x^3+9x-9.
$$[/tex]

This is our final answer.