Factor out the indicated number.

16. Factor [tex]-\frac{1}{3}[/tex] out of [tex]-\frac{1}{3}x - 12[/tex].

17. Factor [tex]-\frac{1}{6}[/tex] out of [tex]-\frac{1}{3}x + \frac{5}{6}y[/tex].

18. Factor [tex]-\frac{1}{2}[/tex] out of [tex]-\frac{1}{2}x + 8[/tex].

Answer :

Sure! Let's factor out the indicated numbers from each expression step-by-step.

16. Factor [tex]\(-\frac{1}{3}\)[/tex] out of [tex]\(-\frac{1}{3}x - 12\)[/tex].

1. Start with the expression [tex]\(-\frac{1}{3}x - 12\)[/tex].

2. Notice that both terms need to be divided by [tex]\(-\frac{1}{3}\)[/tex] to factor it out:
[tex]\[
-\frac{1}{3}x - 12 = -\frac{1}{3}(x + 36)
\][/tex]

3. To verify, distribute [tex]\(-\frac{1}{3}\)[/tex]:
[tex]\[
-\frac{1}{3}(x + 36) = -\frac{1}{3}x - \frac{1}{3} \times 36 = -\frac{1}{3}x - 12
\][/tex]

So, the factored form is [tex]\(x + 36\)[/tex].

17. Factor [tex]\(-\frac{1}{6}\)[/tex] out of [tex]\(-\frac{1}{3}x + \frac{5}{6}y\)[/tex].

1. Begin with the expression [tex]\(-\frac{1}{3}x + \frac{5}{6}y\)[/tex].

2. Divide each term by [tex]\(-\frac{1}{6}\)[/tex]:
[tex]\[
-\frac{1}{3}x + \frac{5}{6}y = -\frac{1}{6}(2x - 5y)
\][/tex]

3. Check by distributing [tex]\(-\frac{1}{6}\)[/tex]:
[tex]\[
-\frac{1}{6}(2x - 5y) = -\frac{1}{6} \times 2x + \frac{1}{6} \times 5y = -\frac{1}{3}x + \frac{5}{6}y
\][/tex]

So, the factored expression is [tex]\(2x - 5y\)[/tex].

18. Factor [tex]\(-\frac{1}{2}\)[/tex] out of [tex]\(-\frac{1}{2}x + 8\)[/tex].

1. Start with [tex]\(-\frac{1}{2}x + 8\)[/tex].

2. Divide each term by [tex]\(-\frac{1}{2}\)[/tex]:
[tex]\[
-\frac{1}{2}x + 8 = -\frac{1}{2}(x - 16)
\][/tex]

3. Confirm by distributing [tex]\(-\frac{1}{2}\)[/tex]:
[tex]\[
-\frac{1}{2}(x - 16) = -\frac{1}{2}x + \frac{1}{2} \times 16 = -\frac{1}{2}x + 8
\][/tex]

Hence, the expression simplifies to [tex]\(x - 16\)[/tex].

So, the factored expressions are:
1. [tex]\(-\frac{1}{3}x - 12\)[/tex] becomes [tex]\(x + 36\)[/tex]
2. [tex]\(-\frac{1}{3}x + \frac{5}{6}y\)[/tex] becomes [tex]\(2x - 5y\)[/tex]
3. [tex]\(-\frac{1}{2}x + 8\)[/tex] becomes [tex]\(x - 16\)[/tex]