College

Factor completely:

[tex]\[ 140x^5 - 60x^4 - 35x^3 + 15x^2 \][/tex]

Choose ALL the factors:

A. [tex]\( (2x - 1) \)[/tex]
B. [tex]\( (7x - 3) \)[/tex]
C. [tex]\( (2x + 1) \)[/tex]
D. [tex]\( (7x + 3) \)[/tex]
E. [tex]\( 5x^2 \)[/tex]
F. [tex]\( (4x^2 - 3) \)[/tex]
G. [tex]\( (4x^2 + 1) \)[/tex]
H. [tex]\( 5x \)[/tex]

Answer :

To factor the expression [tex]\(140x^5 - 60x^4 - 35x^3 + 15x^2\)[/tex] completely, let's follow these steps:

1. Look for Common Factors:
Begin by identifying the greatest common factor (GCF) of all the terms. Here, each term contains [tex]\(x^2\)[/tex], and the coefficients 140, 60, 35, and 15 have a common factor of 5. Thus, the GCF is [tex]\(5x^2\)[/tex].

Factor out [tex]\(5x^2\)[/tex]:
[tex]\[
140x^5 - 60x^4 - 35x^3 + 15x^2 = 5x^2(28x^3 - 12x^2 - 7x + 3).
\][/tex]

2. Factor the Remaining Polynomial:
Now, we need to factor the cubic polynomial [tex]\(28x^3 - 12x^2 - 7x + 3\)[/tex].

3. Use Factoring Techniques:
We'll factor [tex]\(28x^3 - 12x^2 - 7x + 3\)[/tex] into the product of simpler polynomials.

Upon factoring, it can be rewritten as:
[tex]\[
(2x - 1)(2x + 1)(7x - 3).
\][/tex]

4. Combine Everything:
Now, combine all the factors together. The fully factored form is:
[tex]\[
5x^2(2x - 1)(2x + 1)(7x - 3).
\][/tex]

Here's a summary of the factors:
- [tex]\(2x - 1\)[/tex]
- [tex]\(2x + 1\)[/tex]
- [tex]\(7x - 3\)[/tex]
- [tex]\(5x^2\)[/tex]

These match up with some of the factors given in the list. So, the correct factors are [tex]\( (2x - 1) \)[/tex], [tex]\( (2x + 1) \)[/tex], [tex]\( (7x - 3) \)[/tex], and [tex]\( 5x^2 \)[/tex].