Answer :
We begin by evaluating the expression
[tex]$$
m = \sin\left(\frac{18}{20}\right).
$$[/tex]
Since the sine function (with the argument in radians) produces a value between [tex]$-1$[/tex] and [tex]$1$[/tex], calculating the sine of [tex]$\frac{18}{20}$[/tex] yields
[tex]$$
m \approx 0.783327.
$$[/tex]
Next, we need to choose a number [tex]$x$[/tex] such that
[tex]$$
m < x.
$$[/tex]
A common and simple choice is
[tex]$$
x = 1,
$$[/tex]
because it is clear that
[tex]$$
0.783327 < 1.
$$[/tex]
Thus, the final result is
[tex]$$
\sin\left(\frac{18}{20}\right) \approx 0.783327 \quad \text{and} \quad 0.783327 < 1.
$$[/tex]
This completes the step-by-step solution.
[tex]$$
m = \sin\left(\frac{18}{20}\right).
$$[/tex]
Since the sine function (with the argument in radians) produces a value between [tex]$-1$[/tex] and [tex]$1$[/tex], calculating the sine of [tex]$\frac{18}{20}$[/tex] yields
[tex]$$
m \approx 0.783327.
$$[/tex]
Next, we need to choose a number [tex]$x$[/tex] such that
[tex]$$
m < x.
$$[/tex]
A common and simple choice is
[tex]$$
x = 1,
$$[/tex]
because it is clear that
[tex]$$
0.783327 < 1.
$$[/tex]
Thus, the final result is
[tex]$$
\sin\left(\frac{18}{20}\right) \approx 0.783327 \quad \text{and} \quad 0.783327 < 1.
$$[/tex]
This completes the step-by-step solution.