Answer :
Sure, let's go through the problem step-by-step to find which expression is equal to [tex]\(193^0 + \frac{4}{3} \left(10 - 7 \cdot 4^0 \right)\)[/tex].
1. Calculate [tex]\(193^0\)[/tex]:
[tex]\[
193^0 = 1 \quad \text{(Any number raised to the power of 0 is equal to 1)}
\][/tex]
2. Simplify the expression inside the parentheses [tex]\(10 - 7 \cdot 4^0\)[/tex]:
[tex]\[
4^0 = 1 \quad \text{(Again, any number raised to the power of 0 is equal to 1)}
\][/tex]
[tex]\[
10 - 7 \cdot 1 = 10 - 7 = 3
\][/tex]
3. Calculate the remaining part [tex]\(\frac{4}{3} \left(10 - 7 \cdot 4^0\right)\)[/tex]:
[tex]\[
\frac{4}{3} \cdot 3 = \frac{4}{3} \times 3 = 4
\][/tex]
4. Add the results from steps 1 and 3:
[tex]\[
1 + 4 = 5
\][/tex]
Therefore, the expression simplifies to 5.
So, the correct answer from the list provided is:
5
1. Calculate [tex]\(193^0\)[/tex]:
[tex]\[
193^0 = 1 \quad \text{(Any number raised to the power of 0 is equal to 1)}
\][/tex]
2. Simplify the expression inside the parentheses [tex]\(10 - 7 \cdot 4^0\)[/tex]:
[tex]\[
4^0 = 1 \quad \text{(Again, any number raised to the power of 0 is equal to 1)}
\][/tex]
[tex]\[
10 - 7 \cdot 1 = 10 - 7 = 3
\][/tex]
3. Calculate the remaining part [tex]\(\frac{4}{3} \left(10 - 7 \cdot 4^0\right)\)[/tex]:
[tex]\[
\frac{4}{3} \cdot 3 = \frac{4}{3} \times 3 = 4
\][/tex]
4. Add the results from steps 1 and 3:
[tex]\[
1 + 4 = 5
\][/tex]
Therefore, the expression simplifies to 5.
So, the correct answer from the list provided is:
5