College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Evaluate the function [tex]f(x) = x^2 + 2x + 9[/tex] at the given values of the independent variable and simplify.

a. [tex]f(8)[/tex]

b. [tex]f(x+2)[/tex]

a. [tex]f(8) = 89[/tex] (Simplify your answer.)

b. [tex]f(x + 2) = \square[/tex] (Simplify your answer.)

Answer :

To evaluate the function [tex]\( f(x) = x^2 + 2x + 9 \)[/tex] at the given values, follow these steps:

### Part a: Evaluate [tex]\( f(8) \)[/tex]

1. Substitute [tex]\( x = 8 \)[/tex] into the function:
Plug [tex]\( 8 \)[/tex] into [tex]\( f(x) = x^2 + 2x + 9 \)[/tex].

[tex]\[
f(8) = 8^2 + 2 \times 8 + 9
\][/tex]

2. Calculate each term:
- [tex]\( 8^2 = 64 \)[/tex]
- [tex]\( 2 \times 8 = 16 \)[/tex]

3. Add the values together:
[tex]\[
f(8) = 64 + 16 + 9 = 89
\][/tex]

So, the simplified value is [tex]\( f(8) = 89 \)[/tex].

### Part b: Evaluate [tex]\( f(x+2) \)[/tex]

1. Substitute [tex]\( x = x+2 \)[/tex] into the function:
Replace [tex]\( x \)[/tex] with [tex]\( (x+2) \)[/tex] in [tex]\( f(x) = x^2 + 2x + 9 \)[/tex].

[tex]\[
f(x+2) = (x+2)^2 + 2(x+2) + 9
\][/tex]

2. Expand each term:
- [tex]\( (x+2)^2 = x^2 + 4x + 4 \)[/tex]
- [tex]\( 2(x+2) = 2x + 4 \)[/tex]

3. Combine all terms:
[tex]\[
f(x+2) = x^2 + 4x + 4 + 2x + 4 + 9
\][/tex]

4. Simplify by combining like terms:
- Combine the [tex]\( x \)[/tex] terms: [tex]\( 4x + 2x = 6x \)[/tex]
- Combine the constant terms: [tex]\( 4 + 4 + 9 = 17 \)[/tex]

So, [tex]\( f(x+2) = x^2 + 6x + 17 \)[/tex].

Therefore, the simplified expression for [tex]\( f(x+2) \)[/tex] is [tex]\( x^2 + 6x + 17 \)[/tex].