High School

Evaluate the function [tex]f(a)=5a+12[/tex] for each of the given terms, then match each one with the correct value.

1. [tex]a=4[/tex]
a. [tex]f(a)=22[/tex]

2. [tex]a=5[/tex]
b. [tex]f(a)=32[/tex]

3. [tex]a=2[/tex]
c. [tex]f(a)=42[/tex]

4. [tex]a=6[/tex]
d. [tex]f(a)=37[/tex]

Answer :

Sure! Let's evaluate the function [tex]\( f(a) = 5a + 12 \)[/tex] for each given value of [tex]\( a \)[/tex] and find which result matches with the given options.

1. For [tex]\( a = 4 \)[/tex]:
- Substitute [tex]\( a = 4 \)[/tex] into the function:
[tex]\[
f(4) = 5 \times 4 + 12 = 20 + 12 = 32
\][/tex]
- So, [tex]\( f(4) = 32 \)[/tex].

2. For [tex]\( a = 5 \)[/tex]:
- Substitute [tex]\( a = 5 \)[/tex] into the function:
[tex]\[
f(5) = 5 \times 5 + 12 = 25 + 12 = 37
\][/tex]
- So, [tex]\( f(5) = 37 \)[/tex].

3. For [tex]\( a = 2 \)[/tex]:
- Substitute [tex]\( a = 2 \)[/tex] into the function:
[tex]\[
f(2) = 5 \times 2 + 12 = 10 + 12 = 22
\][/tex]
- So, [tex]\( f(2) = 22 \)[/tex].

4. For [tex]\( a = 6 \)[/tex]:
- Substitute [tex]\( a = 6 \)[/tex] into the function:
[tex]\[
f(6) = 5 \times 6 + 12 = 30 + 12 = 42
\][/tex]
- So, [tex]\( f(6) = 42 \)[/tex].

Now, let's match each result with the correct value:

- [tex]\( a = 4 \)[/tex] matches with [tex]\( f(a) = 32 \)[/tex] (option b)
- [tex]\( a = 5 \)[/tex] matches with [tex]\( f(a) = 37 \)[/tex] (option d)
- [tex]\( a = 2 \)[/tex] matches with [tex]\( f(a) = 22 \)[/tex] (option a)
- [tex]\( a = 6 \)[/tex] matches with [tex]\( f(a) = 42 \)[/tex] (option c)

Here's the complete matching:
- 1. [tex]\( a = 4 \)[/tex] — [tex]\( f(a) = 32 \)[/tex] (b)
- 2. [tex]\( a = 5 \)[/tex] — [tex]\( f(a) = 37 \)[/tex] (d)
- 3. [tex]\( a = 2 \)[/tex] — [tex]\( f(a) = 22 \)[/tex] (a)
- 4. [tex]\( a = 6 \)[/tex] — [tex]\( f(a) = 42 \)[/tex] (c)