High School

Evaluate the following integral:

\[
\int_{0}^{1} 7x^6 e^{x^7} \, dx = \, \_\_\_\_
\]

Answer :

The solution of the given integral is [tex]\[ \int_0^1 7x^6 e^{x^7} \, dx = e - 1 \][/tex].

To evaluate the integral [tex]\( \int_0^1 7x^6 e^{x^7} \, dx \)[/tex], we can make the substitution [tex]\( u = x^7 \)[/tex].

Then, [tex]\( du = 7x^6 \, dx \)[/tex], and [tex]\( dx = \frac{1}{7x^6} \, du \).[/tex]

Now, let's rewrite the integral using the substitution:

[tex]\[ \int_0^1 7x^6 e^{x^7} \, dx = \int_{u(0)}^{u(1)} e^u \, du \][/tex]

Now, we need to find the limits of integration in terms of u:

[tex]\[ u(0) = (0)^7 = 0 \][/tex]

[tex]\[ u(1) = (1)^7 = 1 \][/tex]

So, the integral becomes:

[tex]\[ \int_0^1 e^u \, du \][/tex]

The antiderivative of [tex]\( e^u \)[/tex] is [tex]\( e^u \)[/tex], so the integral evaluates to:

[tex]\[ \int_0^1 e^u \, du = \left[ e^u \right]_0^1 = e^1 - e^0 = e - 1 \][/tex]

Therefore,

[tex]\[ \int_0^1 7x^6 e^{x^7} \, dx = e - 1 \][/tex]