Answer :
Sure! Let's solve the given expression step-by-step. We are working with scientific notation.
We want to simplify this expression:
[tex]\[
\frac{(5.2 \times 10^7) \times (5 \times 10^8)}{(3.2 \times 10^6) \times (5 \times 10^5)}
\][/tex]
### Step 1: Simplify the Numerator
First, let's focus on the numerator:
[tex]\[
(5.2 \times 10^7) \times (5 \times 10^8)
\][/tex]
Multiply the coefficients (5.2 and 5):
[tex]\[
5.2 \times 5 = 26
\][/tex]
Now add the exponents of 10:
[tex]\[
10^7 \times 10^8 = 10^{7+8} = 10^{15}
\][/tex]
So, the simplified numerator is:
[tex]\[
26 \times 10^{15}
\][/tex]
### Step 2: Simplify the Denominator
Now simplify the denominator:
[tex]\[
(3.2 \times 10^6) \times (5 \times 10^5)
\][/tex]
Multiply the coefficients (3.2 and 5):
[tex]\[
3.2 \times 5 = 16
\][/tex]
Add the exponents of 10:
[tex]\[
10^6 \times 10^5 = 10^{6+5} = 10^{11}
\][/tex]
So, the simplified denominator is:
[tex]\[
16 \times 10^{11}
\][/tex]
### Step 3: Divide the Simplified Numerator by the Simplified Denominator
Now, let's divide:
[tex]\[
\frac{26 \times 10^{15}}{16 \times 10^{11}}
\][/tex]
Divide the coefficients (26 and 16):
[tex]\[
\frac{26}{16} = 1.625
\][/tex]
Subtract the exponents of 10:
[tex]\[
10^{15} \div 10^{11} = 10^{15-11} = 10^4
\][/tex]
So, the result of the division is:
[tex]\[
1.625 \times 10^4
\][/tex]
Hence, the correct answer is:
A [tex]\( \quad 1.625 \times 10^4 \)[/tex]
We want to simplify this expression:
[tex]\[
\frac{(5.2 \times 10^7) \times (5 \times 10^8)}{(3.2 \times 10^6) \times (5 \times 10^5)}
\][/tex]
### Step 1: Simplify the Numerator
First, let's focus on the numerator:
[tex]\[
(5.2 \times 10^7) \times (5 \times 10^8)
\][/tex]
Multiply the coefficients (5.2 and 5):
[tex]\[
5.2 \times 5 = 26
\][/tex]
Now add the exponents of 10:
[tex]\[
10^7 \times 10^8 = 10^{7+8} = 10^{15}
\][/tex]
So, the simplified numerator is:
[tex]\[
26 \times 10^{15}
\][/tex]
### Step 2: Simplify the Denominator
Now simplify the denominator:
[tex]\[
(3.2 \times 10^6) \times (5 \times 10^5)
\][/tex]
Multiply the coefficients (3.2 and 5):
[tex]\[
3.2 \times 5 = 16
\][/tex]
Add the exponents of 10:
[tex]\[
10^6 \times 10^5 = 10^{6+5} = 10^{11}
\][/tex]
So, the simplified denominator is:
[tex]\[
16 \times 10^{11}
\][/tex]
### Step 3: Divide the Simplified Numerator by the Simplified Denominator
Now, let's divide:
[tex]\[
\frac{26 \times 10^{15}}{16 \times 10^{11}}
\][/tex]
Divide the coefficients (26 and 16):
[tex]\[
\frac{26}{16} = 1.625
\][/tex]
Subtract the exponents of 10:
[tex]\[
10^{15} \div 10^{11} = 10^{15-11} = 10^4
\][/tex]
So, the result of the division is:
[tex]\[
1.625 \times 10^4
\][/tex]
Hence, the correct answer is:
A [tex]\( \quad 1.625 \times 10^4 \)[/tex]