Answer :
To solve the problem [tex]\(163 \times\left(6002 \times 10^{23}\right)\)[/tex], we can break it down into simpler steps:
1. Calculate the multiplication inside the parentheses:
- Start with [tex]\(6002 \times 10^{23}\)[/tex].
When you multiply 6002 by [tex]\(10^{23}\)[/tex], you are essentially shifting the decimal point of 6002 twenty-three places to the right. This results in:
[tex]\[
6002 \times 10^{23} = 600200000000000000000000000
\][/tex]
2. Multiply the result by 163:
- Take the number obtained in the first step, which is 600200000000000000000000000, and multiply it by 163.
[tex]\[
163 \times 600200000000000000000000000
\][/tex]
Performing this multiplication gives:
[tex]\[
97832600000000000000000000000
\][/tex]
Thus, the final result of the expression [tex]\(163 \times (6002 \times 10^{23})\)[/tex] is:
[tex]\[
97832600000000000000000000000
\][/tex]
1. Calculate the multiplication inside the parentheses:
- Start with [tex]\(6002 \times 10^{23}\)[/tex].
When you multiply 6002 by [tex]\(10^{23}\)[/tex], you are essentially shifting the decimal point of 6002 twenty-three places to the right. This results in:
[tex]\[
6002 \times 10^{23} = 600200000000000000000000000
\][/tex]
2. Multiply the result by 163:
- Take the number obtained in the first step, which is 600200000000000000000000000, and multiply it by 163.
[tex]\[
163 \times 600200000000000000000000000
\][/tex]
Performing this multiplication gives:
[tex]\[
97832600000000000000000000000
\][/tex]
Thus, the final result of the expression [tex]\(163 \times (6002 \times 10^{23})\)[/tex] is:
[tex]\[
97832600000000000000000000000
\][/tex]