Answer :
Sure! Let's evaluate the algebraic expression step by step to find the value when [tex]\( x = 9 \)[/tex].
The expression we have is:
[tex]\[ 6 + 6(x - 8)^3 \][/tex]
We need to substitute [tex]\( x = 9 \)[/tex] into this expression. Let's break it down:
1. Substitute x into the expression:
[tex]\[ 6 + 6(9 - 8)^3 \][/tex]
2. Calculate inside the parentheses:
[tex]\[ 9 - 8 = 1 \][/tex]
Substitute back into the expression:
[tex]\[ 6 + 6(1)^3 \][/tex]
3. Evaluate the cube:
[tex]\[ (1)^3 = 1 \][/tex]
4. Multiply by 6:
[tex]\[ 6 \times 1 = 6 \][/tex]
5. Add to 6:
[tex]\[ 6 + 6 = 12 \][/tex]
So, the value of the expression when [tex]\( x = 9 \)[/tex] is [tex]\( 12 \)[/tex].
The expression we have is:
[tex]\[ 6 + 6(x - 8)^3 \][/tex]
We need to substitute [tex]\( x = 9 \)[/tex] into this expression. Let's break it down:
1. Substitute x into the expression:
[tex]\[ 6 + 6(9 - 8)^3 \][/tex]
2. Calculate inside the parentheses:
[tex]\[ 9 - 8 = 1 \][/tex]
Substitute back into the expression:
[tex]\[ 6 + 6(1)^3 \][/tex]
3. Evaluate the cube:
[tex]\[ (1)^3 = 1 \][/tex]
4. Multiply by 6:
[tex]\[ 6 \times 1 = 6 \][/tex]
5. Add to 6:
[tex]\[ 6 + 6 = 12 \][/tex]
So, the value of the expression when [tex]\( x = 9 \)[/tex] is [tex]\( 12 \)[/tex].