Answer :
Sure! Let's evaluate the expression [tex]\( qp + q - p \)[/tex] when [tex]\( p = 7 \)[/tex] and [tex]\( q = 3 \)[/tex].
Step-by-Step Solution:
1. Substitute the values of [tex]\( p \)[/tex] and [tex]\( q \)[/tex] into the expression:
[tex]\[
qp + q - p \quad \text{becomes} \quad 3 \times 7 + 3 - 7
\][/tex]
2. Calculate the product [tex]\( q \times p \)[/tex]:
[tex]\[
3 \times 7 = 21
\][/tex]
3. Add [tex]\( q \)[/tex] to the result from step 2:
[tex]\[
21 + 3 = 24
\][/tex]
4. Finally, subtract [tex]\( p \)[/tex] from the result of step 3:
[tex]\[
24 - 7 = 17
\][/tex]
Therefore, the value of the expression [tex]\( qp + q - p \)[/tex] when [tex]\( p = 7 \)[/tex] and [tex]\( q = 3 \)[/tex] is [tex]\(\boxed{17}\)[/tex].
Step-by-Step Solution:
1. Substitute the values of [tex]\( p \)[/tex] and [tex]\( q \)[/tex] into the expression:
[tex]\[
qp + q - p \quad \text{becomes} \quad 3 \times 7 + 3 - 7
\][/tex]
2. Calculate the product [tex]\( q \times p \)[/tex]:
[tex]\[
3 \times 7 = 21
\][/tex]
3. Add [tex]\( q \)[/tex] to the result from step 2:
[tex]\[
21 + 3 = 24
\][/tex]
4. Finally, subtract [tex]\( p \)[/tex] from the result of step 3:
[tex]\[
24 - 7 = 17
\][/tex]
Therefore, the value of the expression [tex]\( qp + q - p \)[/tex] when [tex]\( p = 7 \)[/tex] and [tex]\( q = 3 \)[/tex] is [tex]\(\boxed{17}\)[/tex].