High School

Evaluate [tex]f(x)[/tex] when [tex]x=6[/tex].

[tex]
f(x) = \left\{
\begin{array}{lll}
6x^2 + 2 & \text{if} & -6 < x < 9 \\
12 & \text{if} & 9 \leq x < 13
\end{array}
\right.
[/tex]

A. 218
B. 74
C. 6
D. 12

Answer :

To evaluate [tex]\( f(x) \)[/tex] when [tex]\( x = 6 \)[/tex], follow these steps:

1. Identify the appropriate condition: We need to choose the correct piece of the piecewise function based on the value of [tex]\( x \)[/tex].
- The function [tex]\( f(x) \)[/tex] has the condition [tex]\( -6 < x < 9 \)[/tex].
- Since [tex]\( x = 6 \)[/tex], which falls within this range, we'll use the corresponding expression.

2. Use the expression for [tex]\( -6 < x < 9 \)[/tex]:
[tex]\[
f(x) = 6x^2 + 2
\][/tex]

3. Substitute [tex]\( x = 6 \)[/tex] into the expression:
- First, calculate [tex]\( 6^2 \)[/tex]:
[tex]\[
6^2 = 36
\][/tex]
- Multiply by 6:
[tex]\[
6 \times 36 = 216
\][/tex]
- Add 2:
[tex]\[
216 + 2 = 218
\][/tex]

4. Result: Therefore, when [tex]\( x = 6 \)[/tex], the value of the function [tex]\( f(x) \)[/tex] is [tex]\( 218 \)[/tex].