Answer :
To solve the problem of evaluating [tex]\( f(-7) \)[/tex] for the function [tex]\( f(x) = 3x^2 \)[/tex], follow these steps:
1. Identify the Function: You are given the function [tex]\( f(x) = 3x^2 \)[/tex]. This is a quadratic function where the coefficient of [tex]\( x^2 \)[/tex] is 3.
2. Substitute the Value: You need to find [tex]\( f(-7) \)[/tex]. This means you'll substitute [tex]\(-7\)[/tex] in place of [tex]\( x\)[/tex] in the function.
3. Perform the Calculation:
- First, calculate [tex]\((-7)^2\)[/tex]. When you square [tex]\(-7\)[/tex], you get 49 because [tex]\((-7) \times (-7) = 49\)[/tex].
- Next, multiply the result by 3. So, calculate [tex]\(3 \times 49\)[/tex].
4. Complete the Multiplication:
- [tex]\(3 \times 49 = 147\)[/tex].
5. Conclusion: Therefore, the value of [tex]\( f(-7) \)[/tex] is 147.
So, the correct answer is D) 147.
1. Identify the Function: You are given the function [tex]\( f(x) = 3x^2 \)[/tex]. This is a quadratic function where the coefficient of [tex]\( x^2 \)[/tex] is 3.
2. Substitute the Value: You need to find [tex]\( f(-7) \)[/tex]. This means you'll substitute [tex]\(-7\)[/tex] in place of [tex]\( x\)[/tex] in the function.
3. Perform the Calculation:
- First, calculate [tex]\((-7)^2\)[/tex]. When you square [tex]\(-7\)[/tex], you get 49 because [tex]\((-7) \times (-7) = 49\)[/tex].
- Next, multiply the result by 3. So, calculate [tex]\(3 \times 49\)[/tex].
4. Complete the Multiplication:
- [tex]\(3 \times 49 = 147\)[/tex].
5. Conclusion: Therefore, the value of [tex]\( f(-7) \)[/tex] is 147.
So, the correct answer is D) 147.