Answer :
To evaluate the expression [tex]\( C = \frac{5}{9}(F - 32) \)[/tex] for [tex]\( F = 77 \)[/tex] degrees, follow these steps:
1. Start with the expression:
[tex]\[ C = \frac{5}{9}(F - 32) \][/tex]
2. Substitute [tex]\( F = 77 \)[/tex] into the expression:
[tex]\[ C = \frac{5}{9}(77 - 32) \][/tex]
3. Calculate the value inside the parentheses:
[tex]\[ 77 - 32 = 45 \][/tex]
4. Plug this result back into the expression:
[tex]\[ C = \frac{5}{9} \times 45 \][/tex]
5. Multiply [tex]\(\frac{5}{9}\)[/tex] by [tex]\(45\)[/tex]:
[tex]\[ C = 25 \][/tex]
So, the value of [tex]\( C \)[/tex] when [tex]\( F = 77 \)[/tex] is 25. The correct answer is 25.
1. Start with the expression:
[tex]\[ C = \frac{5}{9}(F - 32) \][/tex]
2. Substitute [tex]\( F = 77 \)[/tex] into the expression:
[tex]\[ C = \frac{5}{9}(77 - 32) \][/tex]
3. Calculate the value inside the parentheses:
[tex]\[ 77 - 32 = 45 \][/tex]
4. Plug this result back into the expression:
[tex]\[ C = \frac{5}{9} \times 45 \][/tex]
5. Multiply [tex]\(\frac{5}{9}\)[/tex] by [tex]\(45\)[/tex]:
[tex]\[ C = 25 \][/tex]
So, the value of [tex]\( C \)[/tex] when [tex]\( F = 77 \)[/tex] is 25. The correct answer is 25.