College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Evaluate [tex]$C(9,7)$[/tex].

A. 181,440
B. 36
C. 63
D. 72

Answer :

To solve for [tex]\( C(9,7) \)[/tex], we use the combination formula, which is:

[tex]\[
C(n, k) = \frac{n!}{k! \times (n-k)!}
\][/tex]

where [tex]\( n \)[/tex] is the total number of items to choose from, and [tex]\( k \)[/tex] is the number of items to choose. Given [tex]\( n = 9 \)[/tex] and [tex]\( k = 7 \)[/tex], we can plug these values into the formula:

1. Calculate the factorial of 9:
[tex]\[
9! = 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1
\][/tex]

2. Calculate the factorial of 7:
[tex]\[
7! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1
\][/tex]

3. Calculate the factorial of (9 - 7):
[tex]\[
(9 - 7)! = 2! = 2 \times 1
\][/tex]

4. Substitute these values into the combination formula:
[tex]\[
C(9, 7) = \frac{9!}{7! \times 2!}
\][/tex]

5. Simplify this expression:

- Evaluate [tex]\( 9! \)[/tex] and [tex]\( 7! \)[/tex]:
[tex]\[
\frac{9 \times 8 \times 7!}{7! \times 2!} = \frac{9 \times 8}{2 \times 1}
\][/tex]

- Calculate the division:
[tex]\[
\frac{72}{2} = 36
\][/tex]

So, [tex]\( C(9,7) = 36 \)[/tex].