Answer :
We need to evaluate the permutation
[tex]$$
{}_5P_5 = \frac{5!}{(5-5)!}.
$$[/tex]
Step 1: Calculate the factorial in the numerator. By definition,
[tex]$$
5! = 5 \times 4 \times 3 \times 2 \times 1 = 120.
$$[/tex]
Step 2: Calculate the factorial in the denominator. Since
[tex]$$
(5-5)! = 0!,
$$[/tex]
and by definition,
[tex]$$
0! = 1,
$$[/tex]
we have
[tex]$$
(5-5)! = 1.
$$[/tex]
Step 3: Substitute these values into the permutation formula:
[tex]$$
{}_5P_5 = \frac{5!}{(5-5)!} = \frac{120}{1} = 120.
$$[/tex]
Thus, the value of [tex]${}_5P_5$[/tex] is [tex]$\boxed{120}$[/tex].
[tex]$$
{}_5P_5 = \frac{5!}{(5-5)!}.
$$[/tex]
Step 1: Calculate the factorial in the numerator. By definition,
[tex]$$
5! = 5 \times 4 \times 3 \times 2 \times 1 = 120.
$$[/tex]
Step 2: Calculate the factorial in the denominator. Since
[tex]$$
(5-5)! = 0!,
$$[/tex]
and by definition,
[tex]$$
0! = 1,
$$[/tex]
we have
[tex]$$
(5-5)! = 1.
$$[/tex]
Step 3: Substitute these values into the permutation formula:
[tex]$$
{}_5P_5 = \frac{5!}{(5-5)!} = \frac{120}{1} = 120.
$$[/tex]
Thus, the value of [tex]${}_5P_5$[/tex] is [tex]$\boxed{120}$[/tex].