Evaluate each algebraic expression for [tex]c=0.6[/tex] and [tex]d=300[/tex]. Remember to work from left to right.

1. [tex]d+c \times 400[/tex]
2. [tex]d \div 50 \times 7[/tex]
3. [tex]24 \div c \times d[/tex]
4. [tex]15 \times c \times 25[/tex]
5. [tex]d \div 15 \times 1000[/tex]
6. [tex]d \times 720 \div c[/tex]
7. [tex]d \times 20 \times c[/tex]
8. [tex]19 \times d \div c[/tex]
9. [tex]150c \div d[/tex]
10. [tex]\frac{c+d}{75}[/tex]
11. [tex]c \cdot 500 - d[/tex]
12. [tex](d-c) \times 400[/tex]

Answer :

Sure, let's evaluate each algebraic expression using the given values [tex]\(c = 0.6\)[/tex] and [tex]\(d = 300\)[/tex].

1. For [tex]\(d + c \times 400\)[/tex]:
- First, compute [tex]\(c \times 400 = 0.6 \times 400 = 240\)[/tex].
- Then, add that to [tex]\(d\)[/tex]: [tex]\(300 + 240 = 540\)[/tex].

2. For [tex]\(d \div 50 \times 7\)[/tex]:
- Divide [tex]\(d\)[/tex] by 50: [tex]\(300 \div 50 = 6\)[/tex].
- Then multiply by 7: [tex]\(6 \times 7 = 42\)[/tex].

3. For [tex]\(24 \div c \times d\)[/tex]:
- Divide 24 by [tex]\(c\)[/tex]: [tex]\(24 \div 0.6 = 40\)[/tex].
- Then multiply by [tex]\(d\)[/tex]: [tex]\(40 \times 300 = 12000\)[/tex].

4. For [tex]\(15 \times c \times 25\)[/tex]:
- Multiply 15 by [tex]\(c\)[/tex]: [tex]\(15 \times 0.6 = 9\)[/tex].
- Then multiply by 25: [tex]\(9 \times 25 = 225\)[/tex].

5. For [tex]\(d \div 15 \times 1000\)[/tex]:
- Divide [tex]\(d\)[/tex] by 15: [tex]\(300 \div 15 = 20\)[/tex].
- Then multiply by 1000: [tex]\(20 \times 1000 = 20000\)[/tex].

6. For [tex]\(d \times 720 \div c\)[/tex]:
- Multiply [tex]\(d\)[/tex] by 720: [tex]\(300 \times 720 = 216000\)[/tex].
- Then divide by [tex]\(c\)[/tex]: [tex]\(216000 \div 0.6 = 360000\)[/tex].

7. For [tex]\(d \times 20 \times c\)[/tex]:
- Multiply [tex]\(d\)[/tex] by 20: [tex]\(300 \times 20 = 6000\)[/tex].
- Then multiply by [tex]\(c\)[/tex]: [tex]\(6000 \times 0.6 = 3600\)[/tex].

8. For [tex]\(19 \times d \div c\)[/tex]:
- Multiply 19 by [tex]\(d\)[/tex]: [tex]\(19 \times 300 = 5700\)[/tex].
- Then divide by [tex]\(c\)[/tex]: [tex]\(5700 \div 0.6 = 9500\)[/tex].

9. For [tex]\(150 \times c \div d\)[/tex]:
- Multiply 150 by [tex]\(c\)[/tex]: [tex]\(150 \times 0.6 = 90\)[/tex].
- Then divide by [tex]\(d\)[/tex]: [tex]\(90 \div 300 = 0.3\)[/tex].

10. For [tex]\(\frac{c+d}{75}\)[/tex]:
- Add [tex]\(c\)[/tex] and [tex]\(d\)[/tex]: [tex]\(0.6 + 300 = 300.6\)[/tex].
- Then divide by 75: [tex]\(300.6 \div 75 = 4.008\)[/tex].

11. For [tex]\(c \cdot 500 - d\)[/tex]:
- Multiply [tex]\(c\)[/tex] by 500: [tex]\(0.6 \times 500 = 300\)[/tex].
- Then subtract [tex]\(d\)[/tex]: [tex]\(300 - 300 = 0\)[/tex].

12. For [tex]\((d-c) \times 400\)[/tex]:
- Subtract [tex]\(c\)[/tex] from [tex]\(d\)[/tex]: [tex]\(300 - 0.6 = 299.4\)[/tex].
- Then multiply by 400: [tex]\(299.4 \times 400 = 119760\)[/tex].

These are the evaluated values of each expression based on the provided conditions.