College

Escribe [tex]$=0 \neq$[/tex] según corresponda:

[tex]\[
\frac{1}{8} \bigcirc \frac{5}{32}
\][/tex]

[tex]\[
\frac{3}{5} \bigcirc \frac{6}{10}
\][/tex]

[tex]\[
\frac{5}{7}
\][/tex]

[tex]\[
\frac{15}{20}
\][/tex]

[tex]\[
\frac{7}{28} \bigcirc \frac{1}{4}
\][/tex]

[tex]\[
\frac{3}{9} \bigcirc \frac{1}{3}
\][/tex]

[tex]\[
\frac{3}{10} \bigcirc \frac{1}{3}
\][/tex]

[tex]\[
\frac{3}{12} \bigcirc \frac{1}{4}
\][/tex]

[tex]\[
\frac{8}{40} \bigcirc \frac{2}{5}
\][/tex]

---

Simplifica estas fracciones:

[tex]\[
\frac{20}{50} = \square
\][/tex]

[tex]\[
\frac{42}{27} = \square
\][/tex]

[tex]\[
\frac{14}{21} = \square
\][/tex]

[tex]\[
\frac{12}{16} = \square
\][/tex]

[tex]\[
\frac{16}{18} = \square
\][/tex]

---

Amplifica estas fracciones:

[tex]\[
\frac{2}{9} = \square
\][/tex]

[tex]\[
\frac{4}{5} = \square
\][/tex]

[tex]\[
\frac{1}{12} = \square
\][/tex]

[tex]\[
\frac{7}{8} = \square
\][/tex]

[tex]\[
\frac{2}{3} = \square
\][/tex]

Answer :

Sure, let's go through each part of the question step-by-step:

### Comparing Fractions

1. [tex]\( \frac{1}{8} \bigcirc \frac{5}{32} \)[/tex]:
- Convert [tex]\( \frac{1}{8} \)[/tex] to a denominator of 32: [tex]\( \frac{1}{8} = \frac{4}{32} \)[/tex].
- Compare [tex]\( \frac{4}{32} \)[/tex] and [tex]\( \frac{5}{32} \)[/tex]. These are not equal, so [tex]\( \neq \)[/tex].

2. [tex]\( \frac{3}{5} \bigcirc \frac{6}{10} \)[/tex]:
- Simplify [tex]\( \frac{6}{10} \)[/tex] to [tex]\( \frac{3}{5} \)[/tex].
- Both are equal, so [tex]\( = \)[/tex].

3. [tex]\( \frac{5}{7} \)[/tex] and [tex]\( \frac{15}{20} \)[/tex]:
- Simplify [tex]\( \frac{15}{20} \)[/tex] to [tex]\( \frac{3}{4} \)[/tex].
- [tex]\( \frac{5}{7} \)[/tex] is not equal to [tex]\( \frac{3}{4} \)[/tex], so [tex]\( \neq \)[/tex].

4. [tex]\( \frac{7}{28} \)[/tex] and [tex]\( \frac{1}{4} \)[/tex]:
- Simplify [tex]\( \frac{7}{28} \)[/tex] to [tex]\( \frac{1}{4} \)[/tex].
- They are equal, so [tex]\( = \)[/tex].

5. [tex]\( \frac{3}{9} \)[/tex] and [tex]\( \frac{1}{3} \)[/tex]:
- Simplify [tex]\( \frac{3}{9} \)[/tex] to [tex]\( \frac{1}{3} \)[/tex].
- They are equal, so [tex]\( = \)[/tex].

6. [tex]\( \frac{3}{10} \)[/tex] and [tex]\( \frac{1}{3} \)[/tex]:
- These are not equal, as values differ, so [tex]\( \neq \)[/tex].

7. [tex]\( \frac{3}{12} \)[/tex] and [tex]\( \frac{1}{4} \)[/tex]:
- Simplify [tex]\( \frac{3}{12} \)[/tex] to [tex]\( \frac{1}{4} \)[/tex].
- They are equal, so [tex]\( = \)[/tex].

8. [tex]\( \frac{8}{40} \)[/tex] and [tex]\( \frac{2}{5} \)[/tex]:
- Simplify [tex]\( \frac{8}{40} \)[/tex] to [tex]\( \frac{1}{5} \)[/tex].
- [tex]\( \frac{1}{5} \)[/tex] is not equal to [tex]\( \frac{2}{5} \)[/tex], so [tex]\( \neq \)[/tex].

### Simplifying Fractions

1. [tex]\( \frac{20}{50} \)[/tex]:
- Simplify to [tex]\( \frac{2}{5} \)[/tex].

2. [tex]\( \frac{42}{27} \)[/tex]:
- This fraction is already in simplest form, but it equals approximately 1.56 in decimal form.

3. [tex]\( \frac{14}{21} \)[/tex]:
- Simplify to [tex]\( \frac{2}{3} \)[/tex].

4. [tex]\( \frac{12}{16} \)[/tex]:
- Simplify to [tex]\( \frac{3}{4} \)[/tex].

5. [tex]\( \frac{16}{18} \)[/tex]:
- Simplify to [tex]\( \frac{8}{9} \)[/tex].

By following these steps, you can understand how each comparison and simplification was made. If you have any further questions or need more explanations, feel free to ask!