Answer :
Sure! Let's solve the problem step-by-step. The task is to find the fraction equivalent to [tex]\(\frac{3}{5}\)[/tex] from the provided matrix and circle it. Here’s how we can do it:
### Step 1: Understand the target fraction
The fraction we need to find an equivalent for is [tex]\(\frac{3}{5}\)[/tex].
### Step 2: Simplify each fraction in the matrix
We need to compare [tex]\(\frac{3}{5}\)[/tex] with each fraction in the matrix. Fractions are equivalent if they simplify to the same value.
### Step 3: Convert each fraction to decimal
To make comparing easy, we will convert each fraction to a decimal form:
1. [tex]\(\frac{3}{5} = 0.6\)[/tex]
2. [tex]\(\frac{12}{15} ≈ 0.8\)[/tex]
3. [tex]\(\frac{15}{25} = 0.6\)[/tex]
4. [tex]\(\frac{7}{10} = 0.7\)[/tex]
5. [tex]\(\frac{6}{12} = 0.5\)[/tex]
6. [tex]\(\frac{1}{2} = 0.5\)[/tex]
7. [tex]\(\frac{5}{8} ≈ 0.625\)[/tex]
8. [tex]\(\frac{13}{16} ≈ 0.8125\)[/tex]
9. [tex]\(\frac{9}{10} = 0.9\)[/tex]
10. [tex]\(\frac{16}{18} ≈ 0.8889\)[/tex]
11. [tex]\(\frac{4}{5} = 0.8\)[/tex]
12. [tex]\(\frac{18}{20} = 0.9\)[/tex]
13. [tex]\(\frac{12}{16} = 0.75\)[/tex]
14. [tex]\(\frac{8}{15} ≈ 0.5333\)[/tex]
15. [tex]\(\frac{2}{6} ≈ 0.3333\)[/tex]
16. [tex]\(\frac{3}{4} = 0.75\)[/tex]
17. [tex]\(\frac{1}{4} = 0.25\)[/tex]
18. [tex]\(\frac{25}{100} = 0.25\)[/tex]
19. [tex]\(\frac{18}{40} = 0.45\)[/tex]
20. [tex]\(\frac{45}{100} = 0.45\)[/tex]
21. [tex]\(\frac{4}{6} ≈ 0.6667\)[/tex]
22. [tex]\(\frac{6}{4} = 1.5\)[/tex]
23. [tex]\(\frac{20}{30} ≈ 0.6667\)[/tex]
24. [tex]\(\frac{17}{10} = 1.7\)[/tex]
25. [tex]\(\frac{1}{3} ≈ 0.3333\)[/tex]
26. [tex]\(\frac{3}{9} = 0.3333\)[/tex]
27. [tex]\(\frac{15}{60} = 0.25\)[/tex]
28. [tex]\(\frac{17}{51} ≈ 0.3333\)[/tex]
### Step 4: Identify the equivalent fraction(s)
Now we compare each fraction's decimal form to [tex]\(0.6\)[/tex]:
- [tex]\(\frac{15}{25}\)[/tex] = [tex]\(0.6\)[/tex], which is equivalent to [tex]\(\frac{3}{5}\)[/tex]
Thus, the fraction [tex]\(\(\frac{15}{25}\)[/tex]\) should be circled as it is equivalent to [tex]\(\frac{3}{5}\)[/tex].
### Step 1: Understand the target fraction
The fraction we need to find an equivalent for is [tex]\(\frac{3}{5}\)[/tex].
### Step 2: Simplify each fraction in the matrix
We need to compare [tex]\(\frac{3}{5}\)[/tex] with each fraction in the matrix. Fractions are equivalent if they simplify to the same value.
### Step 3: Convert each fraction to decimal
To make comparing easy, we will convert each fraction to a decimal form:
1. [tex]\(\frac{3}{5} = 0.6\)[/tex]
2. [tex]\(\frac{12}{15} ≈ 0.8\)[/tex]
3. [tex]\(\frac{15}{25} = 0.6\)[/tex]
4. [tex]\(\frac{7}{10} = 0.7\)[/tex]
5. [tex]\(\frac{6}{12} = 0.5\)[/tex]
6. [tex]\(\frac{1}{2} = 0.5\)[/tex]
7. [tex]\(\frac{5}{8} ≈ 0.625\)[/tex]
8. [tex]\(\frac{13}{16} ≈ 0.8125\)[/tex]
9. [tex]\(\frac{9}{10} = 0.9\)[/tex]
10. [tex]\(\frac{16}{18} ≈ 0.8889\)[/tex]
11. [tex]\(\frac{4}{5} = 0.8\)[/tex]
12. [tex]\(\frac{18}{20} = 0.9\)[/tex]
13. [tex]\(\frac{12}{16} = 0.75\)[/tex]
14. [tex]\(\frac{8}{15} ≈ 0.5333\)[/tex]
15. [tex]\(\frac{2}{6} ≈ 0.3333\)[/tex]
16. [tex]\(\frac{3}{4} = 0.75\)[/tex]
17. [tex]\(\frac{1}{4} = 0.25\)[/tex]
18. [tex]\(\frac{25}{100} = 0.25\)[/tex]
19. [tex]\(\frac{18}{40} = 0.45\)[/tex]
20. [tex]\(\frac{45}{100} = 0.45\)[/tex]
21. [tex]\(\frac{4}{6} ≈ 0.6667\)[/tex]
22. [tex]\(\frac{6}{4} = 1.5\)[/tex]
23. [tex]\(\frac{20}{30} ≈ 0.6667\)[/tex]
24. [tex]\(\frac{17}{10} = 1.7\)[/tex]
25. [tex]\(\frac{1}{3} ≈ 0.3333\)[/tex]
26. [tex]\(\frac{3}{9} = 0.3333\)[/tex]
27. [tex]\(\frac{15}{60} = 0.25\)[/tex]
28. [tex]\(\frac{17}{51} ≈ 0.3333\)[/tex]
### Step 4: Identify the equivalent fraction(s)
Now we compare each fraction's decimal form to [tex]\(0.6\)[/tex]:
- [tex]\(\frac{15}{25}\)[/tex] = [tex]\(0.6\)[/tex], which is equivalent to [tex]\(\frac{3}{5}\)[/tex]
Thus, the fraction [tex]\(\(\frac{15}{25}\)[/tex]\) should be circled as it is equivalent to [tex]\(\frac{3}{5}\)[/tex].