High School

Eli brings [tex]6 \frac{3}{5}[/tex] pizzas to a party. His friends eat [tex]5 \frac{7}{10}[/tex] pizzas. Peng shows up with [tex]2 \frac{3}{4}[/tex] pizzas.

How many pizzas are there now?

A. [tex]2 \frac{13}{20}[/tex] pizzas
B. [tex]2 \frac{15}{20}[/tex] pizzas
C. [tex]3 \frac{13}{20}[/tex] pizzas
D. [tex]3 \frac{18}{20}[/tex] pizzas

Answer :

To find out how many pizzas are there after all the interactions at the party, follow these steps:

1. Start with Eli's Pizzas:
Eli brings [tex]\(6 \frac{3}{5}\)[/tex] pizzas. Convert this mixed number to an improper fraction or a decimal to make calculations easier.
- [tex]\(6 \frac{3}{5} = 6 + \frac{3}{5} = 6.6\)[/tex]

2. Subtract the Pizzas Eaten by Friends:
Eli's friends eat [tex]\(5 \frac{7}{10}\)[/tex] pizzas. Convert this mixed number as well.
- [tex]\(5 \frac{7}{10} = 5 + \frac{7}{10} = 5.7\)[/tex]

3. Calculate the Remaining Pizzas:
Subtract the eaten pizzas from the pizzas Eli brought:
- Remaining pizzas = [tex]\(6.6 - 5.7 = 0.9\)[/tex]

4. Add Pizzas Brought by Peng:
Peng brings [tex]\(2 \frac{3}{4}\)[/tex] pizzas. Convert this mixed number too:
- [tex]\(2 \frac{3}{4} = 2 + \frac{3}{4} = 2.75\)[/tex]

5. Calculate the Total Pizzas:
Add the pizzas Peng brought to the remaining pizzas:
- Total pizzas = [tex]\(0.9 + 2.75 = 3.65\)[/tex]

6. Convert the Result to a Mixed Fraction:
Finally, convert the total pizzas to a mixed number with a simplified fractional part.
- [tex]\(3.65\)[/tex] can be expressed as a mixed number: [tex]\(3 \frac{13}{20}\)[/tex]

Therefore, the total number of pizzas is [tex]\(3 \frac{13}{20}\)[/tex].

Answer: [tex]\(3 \frac{13}{20}\)[/tex] pizzas.