High School

During his science experiment, Yuri measured the temperature of a water sample as 24 degrees Celsius. To determine the temperature in degrees Fahrenheit, he used the formula [tex]F = \frac{9}{5} C + 32[/tex], where [tex]F[/tex] is the temperature in degrees Fahrenheit and [tex]C[/tex] is the temperature in degrees Celsius.

Which is a correct step in the process Yuri should take to convert the temperature? Check all that apply.

- Substitute 24 for [tex]C[/tex].
- Multiply the value of [tex]C[/tex] by [tex]\frac{9}{5}[/tex] before adding 32.

Incorrect statements to be noted:

- Substitute 24 for [tex]F[/tex].
- Add 32 to [tex]C[/tex] before multiplying by [tex]\frac{9}{5}[/tex].
- [tex]24^{\circ} C[/tex] is [tex]752^{\circ} F[/tex].
- [tex]24^{\circ} C[/tex] is [tex]10089^{\circ} F[/tex].

Answer :

Sure! To convert the temperature from degrees Celsius to degrees Fahrenheit, you can follow these steps using the formula [tex]\( F = \frac{9}{5} C + 32 \)[/tex].

1. Identify the given temperature in Celsius:
Yuri measured the temperature as 24 degrees Celsius, so [tex]\( C = 24 \)[/tex].

2. Substitute the Celsius value into the formula:
The formula for conversion is [tex]\( F = \frac{9}{5} C + 32 \)[/tex]. Substitute 24 for [tex]\( C \)[/tex]:
[tex]\( F = \frac{9}{5} \times 24 + 32 \)[/tex].

3. Multiply the value of [tex]\( C \)[/tex] by [tex]\(\frac{9}{5}\)[/tex]:
Calculate [tex]\(\frac{9}{5} \times 24\)[/tex]:
[tex]\[ \frac{9}{5} \times 24 = 43.2 \][/tex]

4. Add 32 to the result:
Now, add 32 to 43.2 to get the Fahrenheit temperature:
[tex]\[ F = 43.2 + 32 = 75.2 \][/tex]

5. Conclusion:
The temperature of 24 degrees Celsius is equivalent to 75.2 degrees Fahrenheit.

Based on these steps, the correct options for converting Celsius to Fahrenheit in the original problem are:

- Substitute 24 for [tex]\( C \)[/tex].
- Multiply the value of [tex]\( C \)[/tex] by [tex]\(\frac{9}{5}\)[/tex] before adding 32.

Optionally checking the statements for correctness:
- [tex]\(24^{\circ} C\)[/tex] is [tex]\(75.2^{\circ} F\)[/tex]. This statement is correct.

Checking all these steps confirms the accurate conversion of [tex]\(24^{\circ} C\)[/tex] to [tex]\(75.2^{\circ} F\)[/tex].