Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Divide the polynomial [tex]x^4 - x^3 - 19x^2 - 3x - 19[/tex] by [tex](x - 5)[/tex].

Answer :

To divide the polynomial [tex]\(x^4 - x^3 - 19x^2 - 3x - 19\)[/tex] by [tex]\(x - 5\)[/tex], we can use polynomial long division. Here’s a step-by-step explanation:

1. Set Up the Division:
Write [tex]\(x^4 - x^3 - 19x^2 - 3x - 19\)[/tex] inside the division symbol and [tex]\(x - 5\)[/tex] outside.

2. Divide the First Terms:
Divide the leading term of the dividend, [tex]\(x^4\)[/tex], by the leading term of the divisor, [tex]\(x\)[/tex].
[tex]\(x^4 \div x = x^3\)[/tex].
Write [tex]\(x^3\)[/tex] above the division line.

3. Multiply and Subtract:
Multiply the entire divisor, [tex]\(x - 5\)[/tex], by [tex]\(x^3\)[/tex] to get [tex]\(x^4 - 5x^3\)[/tex].
Subtract this from the original polynomial.
[tex]\((x^4 - x^3 - 19x^2) - (x^4 - 5x^3) = 4x^3 - 19x^2\)[/tex].

4. Repeat the Process:
Bring down the next term, [tex]\(-3x\)[/tex], to get [tex]\(4x^3 - 19x^2 - 3x\)[/tex].

5. Divide the First Terms Again:
Divide [tex]\(4x^3\)[/tex] by [tex]\(x\)[/tex] to get [tex]\(4x^2\)[/tex].
Write [tex]\(4x^2\)[/tex] above the division.

6. Multiply and Subtract:
Multiply [tex]\(x - 5\)[/tex] by [tex]\(4x^2\)[/tex] to get [tex]\(4x^3 - 20x^2\)[/tex].
Subtract: [tex]\((4x^3 - 19x^2) - (4x^3 - 20x^2) = x^2\)[/tex].

7. Continue:
Bring down the next term, [tex]\(-3x\)[/tex], to get [tex]\(x^2 - 3x\)[/tex].

8. Divide Again:
Divide [tex]\(x^2\)[/tex] by [tex]\(x\)[/tex] to get [tex]\(x\)[/tex].
Multiply [tex]\(x - 5\)[/tex] by [tex]\(x\)[/tex] to get [tex]\(x^2 - 5x\)[/tex].
Subtract: [tex]\((x^2 - 3x) - (x^2 - 5x) = 2x\)[/tex].

9. Final Steps:
Bring down the last term, [tex]\(-19\)[/tex], to get [tex]\(2x - 19\)[/tex].

10. Divide for the Last Time:
Divide [tex]\(2x\)[/tex] by [tex]\(x\)[/tex] to get [tex]\(2\)[/tex].
Multiply [tex]\(x - 5\)[/tex] by [tex]\(2\)[/tex] to get [tex]\(2x - 10\)[/tex].
Subtract: [tex]\((2x - 19) - (2x - 10) = -9\)[/tex].

11. Result:
The quotient is [tex]\(x^3 + 4x^2 + x + 2\)[/tex] and the remainder is [tex]\(-9\)[/tex].

So, when [tex]\(x^4 - x^3 - 19x^2 - 3x - 19\)[/tex] is divided by [tex]\(x - 5\)[/tex], the quotient is [tex]\(x^3 + 4x^2 + x + 2\)[/tex] and the remainder is [tex]\(-9\)[/tex].