College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Divide the polynomial [tex]\(-99 - 40x + 4x^5 + 18x^4 - 70x^3\)[/tex] by [tex]\(4x - 10\)[/tex].

Answer :

To solve the polynomial division problem [tex]\((-99 - 40x + 4x^5 + 18x^4 - 70x^3) \div (4x - 10)\)[/tex], we need to perform polynomial long division. Here’s a step-by-step explanation of the process:

1. Set Up the Division:
- Divide the polynomial [tex]\(4x^5 + 18x^4 - 70x^3 - 40x - 99\)[/tex] by the divisor [tex]\(4x - 10\)[/tex].

2. Divide the Leading Terms:
- Divide the leading term of the dividend, [tex]\(4x^5\)[/tex], by the leading term of the divisor, [tex]\(4x\)[/tex]. This gives [tex]\(x^4\)[/tex].

3. Multiply and Subtract:
- Multiply [tex]\(x^4\)[/tex] by the entire divisor [tex]\(4x - 10\)[/tex], which gives [tex]\(4x^5 - 10x^4\)[/tex].
- Subtract this result from the original polynomial:
[tex]\[
(4x^5 + 18x^4 - 70x^3 - 40x - 99) - (4x^5 - 10x^4) = 28x^4 - 70x^3 - 40x - 99
\][/tex]

4. Repeat the Process:
- Divide the new leading term [tex]\(28x^4\)[/tex] by the leading term [tex]\(4x\)[/tex] to get [tex]\(7x^3\)[/tex].
- Multiply [tex]\(7x^3\)[/tex] by [tex]\(4x - 10\)[/tex] to get [tex]\(28x^4 - 70x^3\)[/tex].
- Subtract again:
[tex]\[
(28x^4 - 70x^3 - 40x - 99) - (28x^4 - 70x^3) = -40x - 99
\][/tex]

5. Continue Until the End:
- Now divide [tex]\(-40x\)[/tex] by [tex]\(4x\)[/tex] to obtain [tex]\(-10\)[/tex].
- Multiply [tex]\(-10\)[/tex] by [tex]\(4x - 10\)[/tex] to get [tex]\(-40x + 100\)[/tex].
- Subtract again:
[tex]\[
(-40x - 99) - (-40x + 100) = -199
\][/tex]

6. Assemble the Result:
- The quotient of the division is [tex]\(x^4 + 7x^3 - 10\)[/tex].
- The remainder is [tex]\(-199\)[/tex].

In summary, when dividing the polynomial [tex]\(4x^5 + 18x^4 - 70x^3 - 40x - 99\)[/tex] by [tex]\(4x - 10\)[/tex], we obtain a quotient of [tex]\(x^4 + 7x^3 - 10\)[/tex] and a remainder of [tex]\(-199\)[/tex].