College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Divide the polynomial [tex]6x^5 + 4x^4 + 11x^3 + 23x^2 + 12x + 16[/tex] by [tex]x^2 - x + 2[/tex].

Answer :

Sure! Let's solve the polynomial division step-by-step.

We are dividing the polynomial [tex]\(6x^5 + 4x^4 + 11x^3 + 23x^2 + 12x + 16\)[/tex] by [tex]\(x^2 - x + 2\)[/tex].

### Step 1: Divide the Leading Terms

1. Divide the leading term of the numerator by the leading term of the denominator:

[tex]\( \frac{6x^5}{x^2} = 6x^3 \)[/tex]

2. Multiply the entire divisor by this result:

[tex]\((x^2 - x + 2) \cdot 6x^3 = 6x^5 - 6x^4 + 12x^3\)[/tex]

3. Subtract from the original polynomial:

[tex]\[
(6x^5 + 4x^4 + 11x^3) - (6x^5 - 6x^4 + 12x^3) = 10x^4 - x^3
\][/tex]

### Step 2: Repeat the Process

4. Divide the new leading term:

[tex]\( \frac{10x^4}{x^2} = 10x^2 \)[/tex]

5. Multiply the divisor by this result:

[tex]\((x^2 - x + 2) \cdot 10x^2 = 10x^4 - 10x^3 + 20x^2\)[/tex]

6. Subtract from the new polynomial:

[tex]\[
(10x^4 - x^3 + 23x^2) - (10x^4 - 10x^3 + 20x^2) = 9x^3 + 3x^2
\][/tex]

### Step 3: Continue with Division

7. Divide the next leading term:

[tex]\( \frac{9x^3}{x^2} = 9x \)[/tex]

8. Multiply the divisor by this result:

[tex]\((x^2 - x + 2) \cdot 9x = 9x^3 - 9x^2 + 18x\)[/tex]

9. Subtract from the current polynomial:

[tex]\[
(9x^3 + 3x^2 + 12x) - (9x^3 - 9x^2 + 18x) = 12x^2 - 6x
\][/tex]

### Step 4: Final Steps

10. Divide the next leading term:

[tex]\( \frac{12x^2}{x^2} = 12 \)[/tex]

11. Multiply the divisor by 12:

[tex]\((x^2 - x + 2) \cdot 12 = 12x^2 - 12x + 24\)[/tex]

12. Subtract from the current polynomial:

[tex]\[
(12x^2 - 6x + 16) - (12x^2 - 12x + 24) = 6x - 8
\][/tex]

### Result

The quotient is [tex]\(6x^3 + 10x^2 + 9x + 12\)[/tex] and the remainder is [tex]\(6x - 8\)[/tex].

Thus, the division of the polynomials gives us:

[tex]\[
\left(6x^5 + 4x^4 + 11x^3 + 23x^2 + 12x + 16\right) \div \left(x^2 - x + 2\right) = 6x^3 + 10x^2 + 9x + 12 \quad \text{remainder: } 6x - 8
\][/tex]