College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Divide [tex]$x^4+7$[/tex] by [tex]$x-3$[/tex].

A. [tex]$x^3+3x^2+9x+27$[/tex] R 88

B. [tex]$x^3-3x^2-9x-27$[/tex] R 88

C. [tex]$x^3+3x^2+9x-27$[/tex] R -74

Answer :

To solve the problem of dividing [tex]\(x^4 + 7\)[/tex] by [tex]\(x - 3\)[/tex], we'll go through the process of polynomial long division to find the quotient and remainder.

1. Set up the division: Write [tex]\(x^4 + 7\)[/tex] as the dividend and [tex]\(x - 3\)[/tex] as the divisor. You'll need to consider each term of the dividend separately, aligning with powers of [tex]\(x\)[/tex].

2. Divide the first term: Divide the leading term of the dividend, [tex]\(x^4\)[/tex], by the leading term of the divisor, [tex]\(x\)[/tex]. This gives us [tex]\(x^3\)[/tex].

3. Multiply and subtract: Multiply [tex]\(x^3\)[/tex] by the entire divisor [tex]\(x - 3\)[/tex] to get [tex]\(x^4 - 3x^3\)[/tex]. Subtract this from the original dividend:
[tex]\[
(x^4 + 0x^3 + 0x^2 + 0x + 7) - (x^4 - 3x^3) = 3x^3 + 0x^2 + 0x + 7
\][/tex]

4. Bring down the next term: The next term to consider is [tex]\(3x^3\)[/tex]. Divide [tex]\(3x^3\)[/tex] by [tex]\(x\)[/tex], which gives [tex]\(3x^2\)[/tex].

5. Multiply and subtract: Multiply [tex]\(3x^2\)[/tex] by [tex]\(x - 3\)[/tex] to get [tex]\(3x^3 - 9x^2\)[/tex]. Subtract this from the current polynomial:
[tex]\[
(3x^3 + 0x^2 + 0x + 7) - (3x^3 - 9x^2) = 9x^2 + 0x + 7
\][/tex]

6. Bring down the next term: Divide [tex]\(9x^2\)[/tex] by [tex]\(x\)[/tex] to get [tex]\(9x\)[/tex].

7. Multiply and subtract: Multiply [tex]\(9x\)[/tex] by [tex]\(x - 3\)[/tex] to get [tex]\(9x^2 - 27x\)[/tex]. Subtract this from the current polynomial:
[tex]\[
(9x^2 + 0x + 7) - (9x^2 - 27x) = 27x + 7
\][/tex]

8. Bring down the next term: Divide [tex]\(27x\)[/tex] by [tex]\(x\)[/tex] to get [tex]\(27\)[/tex].

9. Multiply and subtract: Multiply [tex]\(27\)[/tex] by [tex]\(x - 3\)[/tex] to get [tex]\(27x - 81\)[/tex]. Subtract this from the current polynomial:
[tex]\[
(27x + 7) - (27x - 81) = 88
\][/tex]

10. Result: The polynomial division is complete, and we are left with a remainder of 88. Therefore, the quotient is [tex]\(x^3 + 3x^2 + 9x + 27\)[/tex] and the remainder is 88.

The correct step-by-step division results in the quotient [tex]\(x^3 + 3x^2 + 9x + 27\)[/tex] with a remainder of 88, matching the first set of conditions in the given options:
[tex]\[ x^3 + 3x^2 + 9x + 27 \quad \text{R } 88 \][/tex]

So, the solution is:
[tex]\[ x^3 + 3x^2 + 9x + 27 \quad \text{R } 88 \][/tex]