College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Divide and simplify.

[tex]
\frac{-20x^{10} + 8x^9 + 4x^8}{4x^8} = \square
[/tex]

Answer :

Sure! Let's divide and simplify the expression step-by-step:

We have the expression:

[tex]\[
\frac{-20x^{10} + 8x^9 + 4x^8}{4x^8}
\][/tex]

### Step 1: Break Down the Expression

To simplify, divide each term in the numerator by the denominator separately:

1. The first term: [tex]\(\frac{-20x^{10}}{4x^8}\)[/tex]
2. The second term: [tex]\(\frac{8x^9}{4x^8}\)[/tex]
3. The third term: [tex]\(\frac{4x^8}{4x^8}\)[/tex]

### Step 2: Simplify Each Term

1. Simplify [tex]\(\frac{-20x^{10}}{4x^8}\)[/tex]:

- Coefficient: [tex]\(\frac{-20}{4} = -5\)[/tex]
- Variables: [tex]\(\frac{x^{10}}{x^8} = x^{10-8} = x^2\)[/tex]

Result: [tex]\(-5x^2\)[/tex]

2. Simplify [tex]\(\frac{8x^9}{4x^8}\)[/tex]:

- Coefficient: [tex]\(\frac{8}{4} = 2\)[/tex]
- Variables: [tex]\(\frac{x^9}{x^8} = x^{9-8} = x\)[/tex]

Result: [tex]\(2x\)[/tex]

3. Simplify [tex]\(\frac{4x^8}{4x^8}\)[/tex]:

- Coefficient: [tex]\(\frac{4}{4} = 1\)[/tex]
- Variables: [tex]\(\frac{x^8}{x^8} = x^{8-8} = x^0 = 1\)[/tex]

Result: [tex]\(1\)[/tex]

### Step 3: Combine the Results

Combine the simplified terms:

[tex]\[
-5x^2 + 2x + 1
\][/tex]

So, the simplified expression is:

[tex]\[
-5x^2 + 2x + 1
\][/tex]

This is the final simplified form.