Answer :
Given the price [tex]$p = 16$[/tex], we first find the production quantity [tex]$q$[/tex] using the equation
[tex]$$
q = -500p + 20000.
$$[/tex]
Substitute [tex]$p = 16$[/tex] into the equation:
[tex]$$
q = -500(16) + 20000 = -8000 + 20000 = 12000.
$$[/tex]
Now, we calculate the expense [tex]$E$[/tex] using the formula
[tex]$$
E = 5q + 40000.
$$[/tex]
Substitute [tex]$q = 12000$[/tex] into this equation:
[tex]$$
E = 5(12000) + 40000 = 60000 + 40000 = 100000.
$$[/tex]
Thus, the expense for production when the price is [tex]$\$[/tex]16[tex]$ is
$[/tex][tex]$
\boxed{100000}.
$[/tex]$
[tex]$$
q = -500p + 20000.
$$[/tex]
Substitute [tex]$p = 16$[/tex] into the equation:
[tex]$$
q = -500(16) + 20000 = -8000 + 20000 = 12000.
$$[/tex]
Now, we calculate the expense [tex]$E$[/tex] using the formula
[tex]$$
E = 5q + 40000.
$$[/tex]
Substitute [tex]$q = 12000$[/tex] into this equation:
[tex]$$
E = 5(12000) + 40000 = 60000 + 40000 = 100000.
$$[/tex]
Thus, the expense for production when the price is [tex]$\$[/tex]16[tex]$ is
$[/tex][tex]$
\boxed{100000}.
$[/tex]$