College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Determine the expense, [tex]\( E \)[/tex], for the production of an item when the price [tex]\( p \)[/tex] is [tex] \$16 [/tex]. Given:

\[
\begin{array}{l}
E = 5q + 40000 \\
q = -500p + 20000
\end{array}
\]

A. [tex] \$12,000 [/tex]
B. [tex] \$60,000 [/tex]
C. [tex] \$75,000 [/tex]
D. [tex] \$100,000 [/tex]

Answer :

Given the price [tex]$p = 16$[/tex], we first find the production quantity [tex]$q$[/tex] using the equation

[tex]$$
q = -500p + 20000.
$$[/tex]

Substitute [tex]$p = 16$[/tex] into the equation:

[tex]$$
q = -500(16) + 20000 = -8000 + 20000 = 12000.
$$[/tex]

Now, we calculate the expense [tex]$E$[/tex] using the formula

[tex]$$
E = 5q + 40000.
$$[/tex]

Substitute [tex]$q = 12000$[/tex] into this equation:

[tex]$$
E = 5(12000) + 40000 = 60000 + 40000 = 100000.
$$[/tex]

Thus, the expense for production when the price is [tex]$\$[/tex]16[tex]$ is

$[/tex][tex]$
\boxed{100000}.
$[/tex]$