Answer :
We are given the following equations:
[tex]$$
E = 5q + 40000
$$[/tex]
[tex]$$
q = -500p + 20000
$$[/tex]
and the price is given as [tex]$p = 16$[/tex].
Step 1: Find the quantity [tex]$q$[/tex].
Substitute [tex]$p = 16$[/tex] into the equation for [tex]$q$[/tex]:
[tex]$$
q = -500 \times 16 + 20000.
$$[/tex]
Calculate:
[tex]$$
q = -8000 + 20000 = 12000.
$$[/tex]
So, the quantity [tex]$q$[/tex] produced is [tex]$12000$[/tex].
Step 2: Find the expense [tex]$E$[/tex].
Now substitute [tex]$q = 12000$[/tex] into the expense equation:
[tex]$$
E = 5 \times 12000 + 40000.
$$[/tex]
Calculate:
[tex]$$
E = 60000 + 40000 = 100000.
$$[/tex]
Thus, the expense [tex]$E$[/tex] for production when the price is [tex]$\$[/tex]16[tex]$ is $[/tex]\[tex]$\;100,000$[/tex].
[tex]$$
E = 5q + 40000
$$[/tex]
[tex]$$
q = -500p + 20000
$$[/tex]
and the price is given as [tex]$p = 16$[/tex].
Step 1: Find the quantity [tex]$q$[/tex].
Substitute [tex]$p = 16$[/tex] into the equation for [tex]$q$[/tex]:
[tex]$$
q = -500 \times 16 + 20000.
$$[/tex]
Calculate:
[tex]$$
q = -8000 + 20000 = 12000.
$$[/tex]
So, the quantity [tex]$q$[/tex] produced is [tex]$12000$[/tex].
Step 2: Find the expense [tex]$E$[/tex].
Now substitute [tex]$q = 12000$[/tex] into the expense equation:
[tex]$$
E = 5 \times 12000 + 40000.
$$[/tex]
Calculate:
[tex]$$
E = 60000 + 40000 = 100000.
$$[/tex]
Thus, the expense [tex]$E$[/tex] for production when the price is [tex]$\$[/tex]16[tex]$ is $[/tex]\[tex]$\;100,000$[/tex].