College

Complete the statements.

The greatest common monomial factor of [tex]$9 x^4 y^3 + 81 x^7 y^5 - 72 x^2 y^6$[/tex] is:

A. [tex]9 x y[/tex]

B. [tex]9 x^2 y^3[/tex]

C. [tex]9 x^7 y^6[/tex]

And the factored form is:

A. [tex]9 x^7 y^6(x^4 y^3 + 9 y - 8 x^2)[/tex]

B. [tex]9 x^2 y^3(x^2 + 9 x^5 y^2 - 8 y^3)[/tex]

C. [tex]9 x^2 y^3(x^2 y + 9 x^5 y^2 - 8 x y^3)[/tex]

D. [tex]9 x y(x^3 y^2 + 9 x^6 y^4 - 72 x y^5)[/tex]

Answer :

To find the greatest common monomial factor of the given polynomial [tex]\(9x^4y^3 + 81x^7y^5 - 72x^2y^6\)[/tex], and to express the polynomial in its factored form, follow these steps:

1. Identify the coefficients and variables in each term:

- First term: [tex]\(9x^4y^3\)[/tex]
- Second term: [tex]\(81x^7y^5\)[/tex]
- Third term: [tex]\(-72x^2y^6\)[/tex]

2. Find the greatest common factor (GCF) for the coefficients:

- Coefficients: 9, 81, and 72
- The GCF of these coefficients is 9.

3. Find the least power of each variable present in all the terms:

- For [tex]\(x\)[/tex]:
- First term: [tex]\(x^4\)[/tex]
- Second term: [tex]\(x^7\)[/tex]
- Third term: [tex]\(x^2\)[/tex]
- The smallest power is [tex]\(x^2\)[/tex].

- For [tex]\(y\)[/tex]:
- First term: [tex]\(y^3\)[/tex]
- Second term: [tex]\(y^5\)[/tex]
- Third term: [tex]\(y^6\)[/tex]
- The smallest power is [tex]\(y^3\)[/tex].

4. Combine the GCF of the coefficients with the lowest powers of the variables:

The greatest common monomial factor is [tex]\(9x^2y^3\)[/tex].

5. Factor the original polynomial using the greatest common monomial factor:

- Divide each term of the polynomial by [tex]\(9x^2y^3\)[/tex]:

- [tex]\(9x^4y^3 \div 9x^2y^3 = x^2\)[/tex]
- [tex]\(81x^7y^5 \div 9x^2y^3 = 9x^5y^2\)[/tex]
- [tex]\(-72x^2y^6 \div 9x^2y^3 = -8y^3\)[/tex]

- Write the factored form:

[tex]\(9x^2y^3(x^2 + 9x^5y^2 - 8y^3)\)[/tex]

Therefore, the greatest common monomial factor is [tex]\(9x^2y^3\)[/tex], and the factored form of the polynomial is [tex]\(9x^2y^3(x^2 + 9x^5y^2 - 8y^3)\)[/tex].